Seawater carbonate chemistry and larval settlement of Sea urchin larvae

Extensive research has shown that the early life stages of marine organisms are sensitive to ocean acidification (OA). Less is known, however, on whether larval settlement and metamorphosis may be affected, or by which mechanisms. These are key processes in the life cycle of most marine benthic orga...

Full description

Bibliographic Details
Main Authors: Espinel-Velasco, Nadjejda, Agüera, Antonio, Lamare, Miles
Format: Dataset
Language:English
Published: PANGAEA 2020
Subjects:
pH
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.925182
https://doi.org/10.1594/PANGAEA.925182
Description
Summary:Extensive research has shown that the early life stages of marine organisms are sensitive to ocean acidification (OA). Less is known, however, on whether larval settlement and metamorphosis may be affected, or by which mechanisms. These are key processes in the life cycle of most marine benthic organisms, since they mark the transition between the free swimming larval stage to the benthic life. We investigated whether OA could affect the larval settlement success of the sea urchin Evechinus chloroticus, a key coastal species with ecological, economic and cultural importance in New Zealand. We performed four settlement experiments to test whether reduced seawater pH (ranging from 8.1 to 7.0, at an interval of ∼0.2 pH units) alters larval settlement and metamorphosis success. Our results show that settlement success was not significantly reduced when the larvae were exposed to a range of reduced seawater pH treatments (8.1–7.0) at time of settlement (direct effects). Similarly, when presented with crustose coralline algae (CCA) pre-conditioned in different seawater pH of either pH 8.1 or 7.7 for 28 days, larval settlement success remained unaltered (indirect effects). We conclude that competent larvae in this species are resilient to OA at time of settlement. Further research on a range of taxa that vary in settlement selectivity and behaviour is needed in order to fully understand the effects of OA on the life cycle of marine invertebrates and the consequences it might have for future coastal marine ecosystems.