Seawater carbonate chemistry and larval swimming speed, spawning and settlement of a robust fouling bryozoan, Bugula neritina

Few studies to date have investigated the effects of ocean acidification on non-reef forming marine invertebrates with non-feeding larvae. Here, we exposed adults of the bryozoan Bugula neritina and their larvae to lowered pH. We monitored spawning, larval swimming, settlement, and post-settlement i...

Full description

Bibliographic Details
Main Authors: Pecquet, Antoine, Dorey, Narimane, Chan, Kit Yu Karen
Format: Dataset
Language:English
Published: PANGAEA 2017
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.901178
https://doi.org/10.1594/PANGAEA.901178
Description
Summary:Few studies to date have investigated the effects of ocean acidification on non-reef forming marine invertebrates with non-feeding larvae. Here, we exposed adults of the bryozoan Bugula neritina and their larvae to lowered pH. We monitored spawning, larval swimming, settlement, and post-settlement individual sizes at two pHs (7.9 vs. 7.6) and settlement dynamics alone over a broader pH range (8.0 down to 6.5). Our results show that spawning was not affected by adult exposure (48 h at pH 7.6), larvae swam 32% faster and the newly-settled individuals grew significantly larger (5%) at pH 7.6 than in the control. Although larvae required more time to settle when pH was lowered, reduced pH was not lethal, even down to pH 6.5. Overall, this fouling species appeared to be robust to acidification, and yet, indirect effects such as prolonging the pelagic larval duration could increase predation risk, and might negatively impact population dynamics.