TerraSAR-X DInSAR displacement map of Kurungnakh Island (Lena River Delta, Siberia) in summer 2013, link to GeoTIFF file

Differential SAR interferometry (DInSAR) uses the phase difference between two SAR signals acquired on two dates over the same area to measure small-scale ground motion. During the last decade the method has been adapted for monitoring permafrost-related ground motion. Here we perform DInSAR on Terr...

Full description

Bibliographic Details
Main Authors: Antonova, Sofia, Sudhaus, Henriette, Strozzi, Tazio, Zwieback, Simon, Kääb, Andreas, Heim, Birgit, Langer, Moritz, Bornemann, Niko, Boike, Julia
Format: Dataset
Language:English
Published: PANGAEA 2018
Subjects:
SAT
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.894775
https://doi.org/10.1594/PANGAEA.894775
Description
Summary:Differential SAR interferometry (DInSAR) uses the phase difference between two SAR signals acquired on two dates over the same area to measure small-scale ground motion. During the last decade the method has been adapted for monitoring permafrost-related ground motion. Here we perform DInSAR on TerraSAR-X data to assess its viability for seasonal thaw subsidence detection in a yedoma landscape of the Lena River Delta. TerraSAR-X is a right-looking SAR satellite launched in 2007, operating in the X-band (wavelength 3.1 cm, frequency 9.6 GHz), with a revisit time of eleven days. All data that we used were acquired in StripMap mode with HH polarization from a descending orbit at 08:34 local acquisition time (22:34 UTC). The incidence angle of the track we use is approximately 31 degrees. The scene size covered an area of approximately 18 km x 56 km. The slant range and azimuth pixel spacing were approximately 0.9 m and 2.4 m, respectively. Based on the ground temperature data we roughly estimated the beginning and the end of thaw season in 2013. The corresponding TerraSAR-X time series used for this study includes nine Single-Look Slant Range Complex (SSC) images taken between 7 June and 14 September 2013. The time span between the acquisitions that we used for interferometry was 11 days, with one exception when the time span was 22 days due to a missing acquisition. The data were processed using the Gamma radar software. The SSC data were converted to Gamma Single Look Complex (SLC) format and the SLC data were then consecutively co-registered with subpixel accuracy (typically better than 0.2 pixels) in such a way that the co-registered slave image became the master for the next image. This way of co-registering also ensures subpixel co-registration accuracy for all interferometric combinations of the nine images. Multilooking was performed with the factor 4 in the range and factor 3 in the azimuth directions to reduce the noise and obtain roughly square ground range pixels. The ground size of the multilooked ...