Grounding line, ice frontal position and coastal ice masks for the Marie Byrd Land Sector of West Antarctica, 2003-2015

Over the past 20 years satellite remote sensing has captured significant downwasting of glaciers that drain the West Antarctic Ice Sheet into the ocean, particularly across the Amundsen Sea Sector. Along the neighbouring Marie Byrd Land Sector, situated west of Thwaites Glacier to Ross Ice Shelf, gl...

Full description

Bibliographic Details
Main Authors: Christie, Frazer D W, Bingham, Robert G, Bisset, Rosie R
Format: Dataset
Language:English
Published: PANGAEA 2018
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.884782
https://doi.org/10.1594/PANGAEA.884782
Description
Summary:Over the past 20 years satellite remote sensing has captured significant downwasting of glaciers that drain the West Antarctic Ice Sheet into the ocean, particularly across the Amundsen Sea Sector. Along the neighbouring Marie Byrd Land Sector, situated west of Thwaites Glacier to Ross Ice Shelf, glaciological change has been only sparsely monitored. Here, we use optical satellite imagery to track grounding-line migration along the Marie Byrd Land Sector between 2003 and 2015, and compare observed changes with ICESat and CryoSat-2-derived surface elevation and thickness change records. During the observational period, 33% of the grounding line underwent retreat. The greatest retreat rates were observed along the 650-km-long Getz Ice Shelf, further west of which only minor retreat occurred. The relative glaciological stability west of Getz Ice Shelf can be attributed to a divergence of the Antarctic Circumpolar Current from the continental-shelf break at 135° W, coincident with a transition in the morphology of the continental shelf. Along Getz Ice Shelf, grounding-line retreat reduced by 68% during the CryoSat-2 era relative to earlier observations. This slowdown is a likely response to reduced oceanic forcing, as inferred from climate reanalysis data. Collectively, our findings underscore the importance of spatial and inter-decadal variability in climate and ocean interactions in moderating glaciological change around Antarctica.