Occurrence of IRD in ODP Hole 151-909C

The Arctic cryosphere is changing and making significant contributions to 21st century sea level rise. The Pliocene epoch had similar CO2 levels to present and a warming comparable to model predictions for the end of this century, providing an opportunity to investigate the operation of Arctic clima...

Full description

Bibliographic Details
Main Authors: Smith, Yvonne M, Hill, Daniel J, Dolan, Aisling M, Haywood, Alan M, Dowsett, Harry J, Risebrobakken, Bjørg
Format: Dataset
Language:English
Published: PANGAEA 2017
Subjects:
AGE
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.884332
https://doi.org/10.1594/PANGAEA.884332
Description
Summary:The Arctic cryosphere is changing and making significant contributions to 21st century sea level rise. The Pliocene epoch had similar CO2 levels to present and a warming comparable to model predictions for the end of this century, providing an opportunity to investigate the operation of Arctic climate in a warm world. The Late Pliocene has well documented climatic conditions. However, the state of the Arctic cryosphere remains partially constrained. Here, for the first time, we couple outputs from a Pliocene climate model with a thermodynamic iceberg model to simulate likely source regions for Ice Rafted Debris (IRD) found in the Nordic Seas from Marine Isotope Stage M2 to the mid Pliocene Warm Period (mPWP). We compare the fraction of melt given by the model scenarios with IRD data from four Ocean Drilling Program (ODP) sites within the Nordic Seas region. Marine sites 911A, 909C and 907A show a persistent occurrence of IRD that modeling results suggest is consistent with permanent ice on Svalbard. Our model results indicate that icebergs sourced from the east coast of Greenland do not reach the Nordic Seas sites during the warm late Pliocene, but instead travel south into the North Atlantic. Small amounts of IRD are found at Hole 642B in the Late Pliocene. Model results identify coastal Norway as the potential source, however this is inconsistent with current understanding of the Late Pliocene Scandinavian climate.