Major elemental concentrations from NGRIP ice core across the interstadial period GI-21.2

Several abrupt shifts from periods of extreme cold (Greenland stadials, GS) to relatively warmer conditions (Greenland interstadials, GI) called Dansgaard-Oeschger events are recorded in the Greenland ice cores. Using cryo-cell UV-laser-ablation inductively-coupled-plasma mass spectrometry (UV-LA-IC...

Full description

Bibliographic Details
Main Authors: Della Lunga, Damiano, Müller, Wolfgang, Rasmussen, Sune Olander, Svensson, Anders M, Vallelonga, Paul T
Format: Dataset
Language:English
Published: PANGAEA 2017
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.875711
https://doi.org/10.1594/PANGAEA.875711
Description
Summary:Several abrupt shifts from periods of extreme cold (Greenland stadials, GS) to relatively warmer conditions (Greenland interstadials, GI) called Dansgaard-Oeschger events are recorded in the Greenland ice cores. Using cryo-cell UV-laser-ablation inductively-coupled-plasma mass spectrometry (UV-LA-ICPMS), we analysed a 2.85 m NGRIP ice core section (~ 250 years; 2691.50–2688.65 m depth) across the transitions of GI-21.2, a short-lived interstadial prior to interstadial GI-21.1 (GI-21.2: 84.87–85.09 ka b2k). GI-21.2 is a ~100-year-long period with d18O values 3–4 per mil higher than the following ~200 years of stadial conditions (GS-21.2), which precede the major GI-21.1 warming. We report concentrations of "major" elements indicative of dust and/or sea salt (Na, Fe, Al, Ca, Mg) at a spatial resolution of ~ 200 µm, while maintaining detection limits in the low-ppb range, thereby achieving sub-annual time resolution even in deep NGRIP ice. We present an improved external calibration and quantification procedure using a set of five ice standards made from aqueous (international) standard solutions. Our results show that element concentrations decrease drastically (more than tenfold) at the warming onset of GI-21.2 at the scale of a single year, followed by relatively low concentrations characterizing the interstadial part before gradually reaching again typical stadial values.