Seawater carbonate chemistry and metabolic data of Arctic pteropods in lab experiment

Thecosome pteropods are considered highly sensitive to ocean acidification. During the Arctic winter, increased solubility of CO2 in cold waters intensifies ocean acidification and food sources are limited. Ocean warming is also particularly pronounced in the Arctic. Here, we present the first data...

Full description

Bibliographic Details
Main Authors: Lischka, Silke, Riebesell, Ulf
Format: Dataset
Language:English
Published: PANGAEA 2017
Subjects:
pH
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.875108
https://doi.org/10.1594/PANGAEA.875108
Description
Summary:Thecosome pteropods are considered highly sensitive to ocean acidification. During the Arctic winter, increased solubility of CO2 in cold waters intensifies ocean acidification and food sources are limited. Ocean warming is also particularly pronounced in the Arctic. Here, we present the first data on metabolic rates of two pteropod species (Limacina helicina, Limacina retroversa) during the Arctic winter at 79°N (polar night/twilight phase). Routine oxygen consumption rates and the metabolic response [oxygen consumption (MO2), ammonia excretion (NH3), overall metabolic balance (O:N)] to elevated levels of pCO2 and temperature were examined. Our results suggest lower routine MO2 rates for both Limacina species in winter than in summer. In an 18-h experiment, both pCO2 and temperature affected MO2 of L. helicina and L. retroversa. After a 9-day experiment with L. helicina all three metabolic response variables were affected by the two factors with interactive effects in case of NH3 and O:N. The response resembled a “hormesis-type” pattern with up-regulation at intermediate pCO2 and the highest temperature level. For L. retroversa, NH3 excretion was affected by both factors and O:N only by temperature. No significant effects of pCO2 or temperature on MO2 were detected. Metabolic up-regulation will entail higher energetic costs that may not be covered during periods of food limitation such as the Arctic winter and compel pteropods to utilize storage compounds to a greater extent than usual. This may reduce the fitness and survival of overwintering pteropods and negatively impact their reproductive success in the following summer.