Ocean acidification impacts mussel control on biomineralisation

Ocean acidification is altering the oceanic carbonate saturation state and threatening the survival of marine calcifying organisms. Production of their calcium carbonate exoskeletons is dependent not only on the environmental seawater carbonate chemistry but also the ability to produce biominerals t...

Full description

Bibliographic Details
Main Authors: Fitzer, Susan C, Phoenix, Vernon R, Cusack, Maggie, Kamenos, N A
Format: Dataset
Language:English
Published: PANGAEA 2014
Subjects:
pH
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.837675
https://doi.org/10.1594/PANGAEA.837675
Description
Summary:Ocean acidification is altering the oceanic carbonate saturation state and threatening the survival of marine calcifying organisms. Production of their calcium carbonate exoskeletons is dependent not only on the environmental seawater carbonate chemistry but also the ability to produce biominerals through proteins. We present shell growth and structural responses by the economically important marine calcifier Mytilus edulis to ocean acidification scenarios (380, 550, 750, 1000 µatm pCO2). After six months of incubation at 750 µatm pCO2, reduced carbonic anhydrase protein activity and shell growth occurs in M. edulis. Beyond that, at 1000 µatm pCO2, biomineralisation continued but with compensated metabolism of proteins and increased calcite growth. Mussel growth occurs at a cost to the structural integrity of the shell due to structural disorientation of calcite crystals. This loss of structural integrity could impact mussel shell strength and reduce protection from predators and changing environments.