Seawater carbonate chemistry, thickness and carbonate elemental composition of the test of juvenile sea urchins in a laboratory experiment

Continuous anthropogenic CO2 emissions to the atmosphere and uptake by the oceans will cause a reduction of seawater pH and saturation state (Omega) of CaCO3 minerals from which marine calcifiers build their shells and skeletons. Sea urchins use the most soluble form of calcium carbonate, high-magne...

Full description

Bibliographic Details
Main Authors: Asnaghi, Valentina, Mangialajo, Luisa, Gattuso, Jean-Pierre, Francour, Patrice, Privitera, Davide, Chiantore, Mariachiara
Format: Dataset
Language:English
Published: PANGAEA 2014
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.833328
https://doi.org/10.1594/PANGAEA.833328
Description
Summary:Continuous anthropogenic CO2 emissions to the atmosphere and uptake by the oceans will cause a reduction of seawater pH and saturation state (Omega) of CaCO3 minerals from which marine calcifiers build their shells and skeletons. Sea urchins use the most soluble form of calcium carbonate, high-magnesium calcite, to build their skeleton, spines and grazing apparatus. In order to highlight the effects of increased pCO2 on the test thickness and carbonate elemental composition of juvenile sea urchins and potential differences in their responses linked to the diet, we performed a laboratory experiment on juvenile Paracentrotus lividus, grazing on calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea, Dictyota dichotoma) macroalgae, under different pH (corresponding to pCO2 values of 390, 550, 750 and 1000 µatm). Results highlighted the importance of the diet in determining sea urchin size irrespectively of the pCO2 level, and the relevance of macroalgal diet in modulating urchin Mg/Ca ratio. The present study provides relevant clues both in terms of the mechanism of mineral incorporation and in terms of bottom-up processes (algal diet) affecting top-down ones (fish predation) in rocky subtidal communities