Seawater carbonate chemistry, calcification and survival of coral recruits in a laboratory experiment

Manipulative studies have demonstrated that ocean acidification (OA) is a threat to coral reefs, yet no experiments have employed diurnal variations in pCO2 that are ecologically relevant to many shallow reefs. Two experiments were conducted to test the response of coral recruits (less than 6 days o...

Full description

Bibliographic Details
Main Authors: Dufault, Aaron M, Cumbo, Vivian R, Fan, Tung-Yung, Edmunds, Peter J
Format: Dataset
Language:English
Published: PANGAEA 2012
Subjects:
EXP
pH
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.830185
https://doi.org/10.1594/PANGAEA.830185
Description
Summary:Manipulative studies have demonstrated that ocean acidification (OA) is a threat to coral reefs, yet no experiments have employed diurnal variations in pCO2 that are ecologically relevant to many shallow reefs. Two experiments were conducted to test the response of coral recruits (less than 6 days old) to diurnally oscillating pCO2; one exposing recruits for 3 days to ambient (440 µatm), high (663 µatm) and diurnally oscillating pCO2 on a natural phase (420-596 µatm), and another exposing recruits for 6 days to ambient (456 µatm), high (837 µatm) and diurnally oscillating pCO2 on either a natural or a reverse phase (448-845 µatm). In experiment I, recruits exposed to natural-phased diurnally oscillating pCO2 grew 6-19% larger than those in ambient or high pCO2. In experiment II, recruits in both high and natural-phased diurnally oscillating pCO2 grew 16 per cent larger than those at ambient pCO2, and this was accompanied by 13-18% higher survivorship; the stimulatory effect on growth of oscillatory pCO2 was diminished by administering high pCO2 during the day (i.e. reverse-phased). These results demonstrate that coral recruits can benefit from ecologically relevant fluctuations in pCO2 and we hypothesize that the mechanism underlying this response is highly pCO2-mediated, night-time storage of dissolved inorganic carbon that fuels daytime calcification.