(Table 1) Physical oceanography during Lance cruise LA99/2 in the marginal ice zone of the Barents Sea

Zooplankton was studied on eight stations in the marginal ice zone (MIZ) of the Barents Sea, in May 1999, along two transects across the ice edge. On each station, physical background measurements and zooplankton samples were taken every 6 h over a 24 h period at five discrete depth intervals. Clust...

Full description

Bibliographic Details
Main Authors: Blachowiak-Samolyk, Katarzyna, Kwasniewski, Slawek, Hop, Haakon, Falk-Petersen, Stig
Format: Dataset
Language:English
Published: PANGAEA 2008
Subjects:
CTD
IPY
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.807548
https://doi.org/10.1594/PANGAEA.807548
Description
Summary:Zooplankton was studied on eight stations in the marginal ice zone (MIZ) of the Barents Sea, in May 1999, along two transects across the ice edge. On each station, physical background measurements and zooplankton samples were taken every 6 h over a 24 h period at five discrete depth intervals. Cluster analysis revealed separation of open water stations from all ice stations as well as high similarity level among replicates belonging to particular station. Based on five replicates per station, analysis of variance (ANOVA) confirmed significant differences (P < 0.05) in abundances of the main mesozooplankton taxa among stations. Relations between the zooplankton community and environmental parameters were established using redundancy analysis (CANOCO). In total, 55% of mesozooplankton variability within studied area was explained by eight variables with significant conditional effects: depth stratum, fluorescence, temperature, salinity, bottom depth, latitude, bloom situation, and ice concentration. GLM models supported supposition about clear and negative relationship between concentration of Oithona similis, and overall mesozooplankton diversity The analyses showed a dynamic relationship between mesozooplankton distribution and hydrological conditions on short-term scale. Furthermore, our study demonstrated that variability in the physical environment of dynamic MIZ of the Barents Sea has measurable effect on the Arctic pelagic ecosystem.