(Table 1) Magnetozone boundaries, age and sedimentation rate at DSDP Hole 93-605

Natural Remanent Magnetization (NRM) was measured for regularly spaced samples from the 620-m-thick, lower middle Eocene to upper Maestrichtian section of DSDP Site 605. The total NRM of the Eocene chalks was too low (5-50 µA/m) to establish a reliable magnetic polarity stratigraphy. However, the re...

Full description

Bibliographic Details
Main Authors: Bruins, J, van Hinte, Jan E, Zijderveld, J D A
Format: Dataset
Language:English
Published: PANGAEA 1987
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.788910
https://doi.org/10.1594/PANGAEA.788910
Description
Summary:Natural Remanent Magnetization (NRM) was measured for regularly spaced samples from the 620-m-thick, lower middle Eocene to upper Maestrichtian section of DSDP Site 605. The total NRM of the Eocene chalks was too low (5-50 µA/m) to establish a reliable magnetic polarity stratigraphy. However, the results from the somewhat more clayrich Paleocene-upper Maestrichtian section are useful. A fourfold quality classification of the results of progressive demagnetization studies aided in determining the polarity of the original remanence. Two types (1 and 2a) showed a Characteristic Remanent Magnetization (ChRM) direction with reversed and normal polarity, respectively; the third type (2b) can be interpreted as having a reversed ChRM, which could not be cleaned, whereas the fourth type (3) is considered to be unreliable. The Site 605 magnetic polarity stratigraphy compares well with published sections, adding important detail to the correlation with planktonic microfossil zones and, hence, to the resolution of this portion of the time scale (C24-C32 on the Berggren et al., 1985, scale). The Cretaceous/Tertiary boundary occurs in a reversed polarity zone that has been correlated with Subchron C29r. We suspect the presence of an unconformity at the boundary between lithostratigraphic Units Va and IV a location which is also the level of Reflection Horizon A*.