Calcareous nannofossils and C37 alkenones at ODP Site 162-982

During the late Pliocene (~3 to 2.5 Ma), oceanic records of opal and C37 alkenone accumulation from around the world show a secular shift towards lower values in the high latitudes and higher values in the low and mid latitudes. These shifts are broadly coincident with the intensification of norther...

Full description

Bibliographic Details
Main Authors: Bolton, Clara T, Lawrence, Kira T, Gibbs, Samantha J, Wilson, Paul A, Herbert, Timothy D
Format: Other/Unknown Material
Language:English
Published: PANGAEA 2011
Subjects:
ODP
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.787734
https://doi.org/10.1594/PANGAEA.787734
Description
Summary:During the late Pliocene (~3 to 2.5 Ma), oceanic records of opal and C37 alkenone accumulation from around the world show a secular shift towards lower values in the high latitudes and higher values in the low and mid latitudes. These shifts are broadly coincident with the intensification of northern hemisphere glaciation and are suggestive of changes in export productivity, with potential implications for Pliocene atmospheric carbon dioxide concentrations. The interpretation of a global latitudinal shift in productivity, however, requires testing because of the potential uncertainties associated with site to site comparisons of records that can be influenced by highly nonlinear processes associated with production, export, and preservation. Here, we assess the inferred Pliocene latitudinal productivity shift interpretation by presenting new records of C37 alkenone accumulation from Ocean Drilling Program (ODP) Site 982 in the North Atlantic and biotic assemblages (calcareous nannoplankton) from this site and ODP Site 846 in the eastern tropical Pacific. Our results corroborate the interpretation of C37 alkenone accumulation as a proxy for gross export productivity at these sites, indicating that large-scale productivity decreases at high latitudes and increases at tropical sites are recorded robustly. We conclude that the intensification of northern hemisphere glaciation during the late Pliocene was associated with a profound reorganisation of ocean biogeochemistry.