Stable isotopes, core logging data, relative paleointensity, dry bulk density, biogenic opal, CN-data (TC, TOC, CaCO3, TN), element concentrations, and coarse fraction of three sediment cores from the western Bering Sea

We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past ~180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivit...

Full description

Bibliographic Details
Main Authors: Riethdorf, Jan-Rainer, Nürnberg, Dirk, Max, Lars, Tiedemann, Ralf, Gorbarenko, Sergey A, Malakhov, Mikhail I
Format: Dataset
Language:English
Published: PANGAEA 2013
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.786307
https://doi.org/10.1594/PANGAEA.786307
Description
Summary:We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past ~180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans) strongly correspond to the Dansgaard-Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.