Pigments, phytoplankton and its production parameters in the Obskaya Guba and adjacent Kara Sea in the latest September 2007

Material was collected in the Ob River estuary and the adjacent shallow Kara Sea shelf between 71°14.0'N and 75°33.0'N at the end of September 2007. Latitudinal zonation in phytoplankton distribution was demonstrated; this zonation was determined by changes in salinity and concentration of...

Full description

Bibliographic Details
Main Authors: Sukhanova, Irina N, Flint, Mikhail V, Mosharov, SA, Sergeeva, V M
Format: Dataset
Language:English
Published: PANGAEA 2011
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.767374
https://doi.org/10.1594/PANGAEA.767374
Description
Summary:Material was collected in the Ob River estuary and the adjacent shallow Kara Sea shelf between 71°14.0'N and 75°33.0'N at the end of September 2007. Latitudinal zonation in phytoplankton distribution was demonstrated; this zonation was determined by changes in salinity and concentration of nutrients. Characteristic of the phytocenosis in the southern desalinated zone composed of freshwater diatom and green algae species were high population density (1500000 cells/l), biomass (210 ?g C/l), chlorophyll concentration (4.5 ?g/l), and uniform distribution in the water column. High primary production (~40 ?g C/l/day) was recorded in the upper 1.5 m layer. The estuarine frontal zone located to the north had a halocline at depth 3-5 m. Freshwater species with low abundance (250000 cells/l), biomass (24 ?g C/l), and chlorophyll concentration (1.5 ?g/l) dominated above the halocline. Marine diatom algae, dinoflagellates, and autotrophic flagellates formed a considerable part of the phytocenosis below the halocline; community characteristics were two-fold lower as compared with the upper layer. Maximal values of primary production (~10 ?g C/l/day) were recorded in the upper 1.5 m layer. The phytocenosis in the seaward zone was formed by marine alga species and was considerably poorer as compared with the frontal zone. Assimilation rates of carbon per chlorophyll a at the end of the vegetation season within the studied area were low, average 0.4-1.0 ?g C/?g Chl/hour in the upper layer and 0.03-0.1 ?g C/?g Chl/hour below the pycnocline.