Seawater carbonate chemistry and processes during experiments with Emiliania huxleyi (2005 Bergen) and Coccolithus braarudii (RCC 1200), 2010

The physiological performance of two coccolithophore species,Emiliania huxleyi and Coccolithus braarudii, was investigated during long-term exposure to elevated pCO2 levels. Mono-specific cultures were grown over 152 (E. huxleyi) and 65 (C. braarudii) generations while pCO2 was gradually increased t...

Full description

Bibliographic Details
Main Authors: Müller, Marius N, Schulz, Kai Georg, Riebesell, Ulf
Format: Dataset
Language:English
Published: PANGAEA 2010
Subjects:
pH
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.744738
https://doi.org/10.1594/PANGAEA.744738
Description
Summary:The physiological performance of two coccolithophore species,Emiliania huxleyi and Coccolithus braarudii, was investigated during long-term exposure to elevated pCO2 levels. Mono-specific cultures were grown over 152 (E. huxleyi) and 65 (C. braarudii) generations while pCO2 was gradually increased to maximum levels of 1150 ?atm (E. huxleyi) and 930 ?atm (C. braarudii) and kept constant thereafter. Rates of cell growth and cell quotas of particulate organic carbon (POC), particulate inorganic carbon (PIC) and total particulate nitrogen (TPN) were determined repeatedly throughout the incubation period. Increasing pCO2 caused a decrease in cell growth rate of 9% and 29% in E. huxleyi and C. braarudii, respectively. In both species cellular PIC:TPN and PIC:POC ratios decreased in response to rising pCO2, whereas no change was observed in the POC:TPN ratios of E. huxleyi and C. braarudii. These results are consistent with those obtained in shorter-term high CO2exposure experiments following abrupt pertubations of the seawater carbonate system and indicate that for the strains tested here a gradual CO2 increase does not alleviate CO2/pH sensitivity.