Middle to Late Quaternary sedimentation and rock-magnetic of ODP Site 105-646

We examine rock-magnetic, carbonate, and planktonic foraminiferal fluxes to identify climatically controlled changes of terrigenous and pelagic sedimentation at Ocean Drilling Program (ODP) Site 646 (the Labrador Sea). Terrigenous sediments are brought to the site principally by bottom currents. We...

Full description

Bibliographic Details
Main Authors: Hall, Frank R, Bloemendal, Jan, King, John W, Arthur, Michael A, Aksu, Ali E
Format: Dataset
Language:English
Published: PANGAEA 1989
Subjects:
ODP
Kap
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.743538
https://doi.org/10.1594/PANGAEA.743538
Description
Summary:We examine rock-magnetic, carbonate, and planktonic foraminiferal fluxes to identify climatically controlled changes of terrigenous and pelagic sedimentation at Ocean Drilling Program (ODP) Site 646 (the Labrador Sea). Terrigenous sediments are brought to the site principally by bottom currents. We use a rock-magnetic parameter sensitive to changes in magnetic mineral grain size, the ratio of anhysteretic susceptibility to low-field magnetic susceptibility (XARM/X), to monitor changes in bottom-current intensity over time, with large values of XARM/X (finer-grained magnetic minerals) indicating weaker bottom currents. A second rock-magnetic parameter, magnetic mineral accumulation rate (KaT) was used to indicate variations in terrigenous flux. Planktonic foraminiferal and carbonate accumulation rates (Pfar and CaC03ar) are used as indicators of pelagic flux. Absolute age assignments are based on correlation between the planktonic foraminiferal oxygen-isotope variations for Site 646 and the SPECMAP master oxygen-isotope curve. Cross-correlation analyses of the parameters that we studied with respect to the SPECMAP curve suggest that from oxygen-isotope stages 21 to 11, sedimentation rate, KaT, X, CaCO3ar, and Pfar were at their maximums, whereas XARM/X was at its minimum during peak interglacials (i.e., 0 k.y. lag time with respect to minimum ice volume). However, all parameters we examined lag behind minimum ice volume from stages 11 to 1, indicating a change in timing of both pelagic and terrigenous fluxes at approximately 400 k.y. BP. The negative correlation coefficient between XARM/X and the SPECMAP curve further suggest that finer-grained magnetic minerals are deposited during glacial periods, which probably reflects weaker bottom currents. The shift observed in the lag times of parameters examined with respect to the SPECMAP record is attributed to a change in significance of orbital parameters. Spectral results exhibit strong power in eccentricity (about 100 k.y.) throughout the record. Kap X, CaCO3flr, ...