Mineralogy and interstitial-water chemistry of ODP Leg 101 sites

Concentrations of dissolved Ca2+, Sr2+, Mg2+, SO4[2-], and alkalinity were measured in pore waters squeezed from sediments taken from ODP Holes 626C and 626D in the Florida Straits; Holes 627A and 627B, 628A, and 630A and 630C north of Little Bahama Bank; Holes 631 A, 632A and 632B, and 633A in Exum...

Full description

Bibliographic Details
Main Authors: Swart, Peter K, Guzikowski, Michael
Format: Dataset
Language:English
Published: PANGAEA 1988
Subjects:
ODP
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.742896
https://doi.org/10.1594/PANGAEA.742896
Description
Summary:Concentrations of dissolved Ca2+, Sr2+, Mg2+, SO4[2-], and alkalinity were measured in pore waters squeezed from sediments taken from ODP Holes 626C and 626D in the Florida Straits; Holes 627A and 627B, 628A, and 630A and 630C north of Little Bahama Bank; Holes 631 A, 632A and 632B, and 633A in Exuma Sound; and Holes 634A and 635A and 635B in Northeast Providence Channel. These data are compared with the mineralogy and strontium content of the sediments from which the waters were squeezed. Contrasts in the geochemical profiles suggest that significantly different processes govern pore-water signatures at each group of sites. In Little Bahama Bank, strong positive Ca2+ gradients are correlated with weak negative Mg2+ profiles. These trends are analogous to those seen at DSDP sites where carbonate deposits immediately overlie mafic basement, but as the depth to basement may be in excess of 5000 m, we suggest that diffusion gradients are initiated by an underlying sedimentary unit. In contrast, Ca2+ and Mg2+ gradients in Exuma Sound are not developed to any appreciable extent over similar thicknesses of sediment. We suggest that the pore-water chemistry in these deposits is principally controlled by diagenetic reactions occurring within each sequence. The location and extent of carbonate diagenesis can be estimated from dissolved Sr2+ profiles. In Little Bahama Bank and Exuma Sound, Sr2+ concentrations reach a maximum value of between 700 and 1000 µmol/L. Although the depths at which these concentrations are achieved are different for the two areas, the corresponding age of the sediment at the dissolved Sr2+ maximum is similar. Consequently, the diffusive flux of Sr2+ and the calculated rates of recrystallization in the two areas are likewise of a similar magnitude. The rates of recrystallization we calculate are lower than those found in some DSDP pelagic sites. As the waters throughout most of the holes are saturated with respect to SrSO4, celestite precipitation may cause erroneously low Sr2+ production rates ...