Distribution, variability and burial of organic carbon at Northern Fram Strait and Yermak Plateau

The environment of the Fram Strait, the only deepwater connection of the Arctic Ocean to the world oceans via the North Atlantic (Fig.7.8.1; see Fig.7.1.9), is influenced by the distribution of sea-ice and two opposing current systems. The northward flowing West Spitsbergen Current (WSC) transports...

Full description

Bibliographic Details
Main Authors: Birgel, Daniel, Stein, Ruediger
Format: Dataset
Language:English
Published: PANGAEA 2004
Subjects:
GKG
KAL
MUC
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.728140
https://doi.org/10.1594/PANGAEA.728140
Description
Summary:The environment of the Fram Strait, the only deepwater connection of the Arctic Ocean to the world oceans via the North Atlantic (Fig.7.8.1; see Fig.7.1.9), is influenced by the distribution of sea-ice and two opposing current systems. The northward flowing West Spitsbergen Current (WSC) transports warm, near-surface water (Manley 1995; Rudels et al. 2000) to the Northern Fram Strait. About 22% of the northward flowing Atlantic waters are re-circulated within the RAC (Return Atlantic Current) between 78 and 80°N, west of Svalbard. At 80°N the WSC splits into the Svalbard (ca. 33% of the WSC waters) and the Yermak Branch (ca. 45% of the WSC waters). On the western side of the Fram Strait, the East Greenland Current (EGC) transports cold and low-salinity water southwards along the eastern continental margin of Greenland. (Fig.7.8.1). Primary production in ice-covered areas of western Fram Strait is limited by sea-ice cover, and influenced by the predominant water mass. Productivity in the interior Arctic Ocean is generally low (0.09 gC/m²/day) (Wheeler et al. 1996; see Chapter 3). At marginal ice zones and oceanic fronts in the Fram Strait, however, primary productivity exhibits strong fluctuations and may exceed 1 gC/m²/day (Hirche et al. 1991). The accumulation of organic carbon in sediments depends not only on the supply from primary productivity, but also on selective degradation in sediments. Efficient vertical transport through the water column by formation of aggregations (ballast effect) (Ittekkot et al. 1992; Knies and Stein 1998) and increased lateral transport by strong currents enable a higher preservation of organic carbon in the sediments. In this region, the WSC is capable of transporting large amounts of suspended organic matter to the ice-covered regions in northern Fram Strait (Rutgers van der Loeff et al. 2002). Numerous studies have dealt with paleoceanography and the associated organic carbon accumulation in the sediments of Fram Strait and adjacent regions during the last glacial/interglacial ...