Seawater carbonate chemistry, processes and elements during experiments with planktonic foraminifera Orbulina universa, 2004

We investigate the sensitivity of U/Ca, Mg/Ca, and Sr/Ca to changes in seawater [CO3[2-]] and temperature in calcite produced by the two planktonic foraminifera species, Orbulina universa and Globigerina bulloides, in laboratory culture experiments. Our results demonstrate that at constant temperatu...

Full description

Bibliographic Details
Main Authors: Russell, Ann D, Hönish, Bärbel, Spero, Howard J, Lea, David W
Format: Dataset
Language:English
Published: PANGAEA 2004
Subjects:
EXP
pH
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.721890
https://doi.org/10.1594/PANGAEA.721890
Description
Summary:We investigate the sensitivity of U/Ca, Mg/Ca, and Sr/Ca to changes in seawater [CO3[2-]] and temperature in calcite produced by the two planktonic foraminifera species, Orbulina universa and Globigerina bulloides, in laboratory culture experiments. Our results demonstrate that at constant temperature, U/Ca in O. universa decreases by 25 +/- 7% per 100 µmol [CO3[2-]] kg**-1, as seawater [CO3[2-]] increases from 110 to 470 µmol kg**-1. Results from G. bulloides suggest a similar relationship, but U/Ca is consistently offset by ~+40% at the same environmental [CO3[2-]]. In O. universa, U/Ca is insensitive to temperature between 15°C and 25°C. Applying the O. universa relationship to three U/Ca records from a related species, Globigerinoides sacculifer, we estimate that Caribbean and tropical Atlantic [CO3[2-]] was 110 +/- 70 µmol kg**-1 and 80 +/- 40 µmol kg**-1 higher, respectively, during the last glacial period relative to the Holocene. This result is consistent with estimates of the glacial-interglacial change in surface water [CO3[2-]] based on both modeling and on boron isotope pH estimates. In settings where the addition of U by diagenetic processes is not a factor, down-core records of foraminiferal U/Ca have potential to provide information about changes in the ocean's carbonate concentration.