Hydrologic and Geochemical Controls on the Transport of Radionuclides in Natural Undisturbed Arid Environments as Determined by Accelerator Mass Spectrometry Measurements

This project developed low-level analytical methods for the measurement of radionuclides by accelerator mass spectrometry. The contaminant radionuclides potentially measurable by AMS include: 14C, 36Cl, 59Ni, 63Ni, 90Sr, 93Zr, 99Tc, 129I, 239Np, 239Pu, and other actinides. We chose to concentrate on...

Full description

Bibliographic Details
Main Authors: Nimz, Gregory J., Caffee, Marc W., McAninch, Jeffrey
Language:unknown
Published: 2020
Subjects:
Online Access:http://www.osti.gov/servlets/purl/827420
https://www.osti.gov/biblio/827420
https://doi.org/10.2172/827420
Description
Summary:This project developed low-level analytical methods for the measurement of radionuclides by accelerator mass spectrometry. The contaminant radionuclides potentially measurable by AMS include: 14C, 36Cl, 59Ni, 63Ni, 90Sr, 93Zr, 99Tc, 129I, 239Np, 239Pu, and other actinides. We chose to concentrate on 36Cl, 99Tc, 90Sr, and 129I. These nuclides were globally distributed as fallout during the era of atmospheric nuclear testing, and occur today in almost every environment. They also are prominent contaminant nuclides at a variety of DOE sites. There is a need to develop these low-level methods to observe the migration of radionuclides in natural environments. There are at least three advantages of this: (1) the ability to conduct migration studies in locations most like those of concern to public health, e.g., a ''far-field'' environment; (2) migration research does not have to be conducted at sites of multiple contamination, e.g., by VOC's, which can produce hard-to-interpret results; and (3) it becomes unnecessary to collect research samples that are themselves radioactive waste and are therefore difficult to handle and dispose of in the laboratory. Our approach of examining globally distributed, fallout radionuclides provides another advantage: (4) since the nuclides are globally distributed, migration research can be conducted in any chosen environment. Arid environments can be examined for purposes of nuclear waste storage; riverine systems can be examined for the effects of long-range transport; forested or agricultural regions can be examined for the effects of vegetative mediation; even accessible arctic regions could be examined to better understand the fate of radionuclides in remote northern Russia. The innovative aspect of this research project was that it developed methods by which field studies of radionuclide migration could take place virtually anywhere, making the research easier to conduct, less expensive, and better controlled scientifically. Science is still in the process of trying to ...