de Haas-van Alphen studies and Fermi surface properties of organic superconductors (ET)[sub 2]X

de Haas-van Alphen (dHvA) measurements of organic superconductors (ET)[sub 2]X, where ET stands for bis(ethylene)dithiotetrathiafulvalene (or BEDT-TTF) and X = IBr[sub 2], (NH[sub 4])Hg(SCN)[sub 4] and Cu(NCS)[sub 2] are reported. The strong two-dimensionality of the Fermi surface (FS) is clearly se...

Full description

Bibliographic Details
Main Authors: Wosnitza, J. . Physikalisches Inst.), Crabtree, G.W., Williams, J.M., Wang, H.H., Carlson, K.D., Geiser, U. )
Language:unknown
Published: 2008
Subjects:
Online Access:http://www.osti.gov/servlets/purl/6342515
https://www.osti.gov/biblio/6342515
Description
Summary:de Haas-van Alphen (dHvA) measurements of organic superconductors (ET)[sub 2]X, where ET stands for bis(ethylene)dithiotetrathiafulvalene (or BEDT-TTF) and X = IBr[sub 2], (NH[sub 4])Hg(SCN)[sub 4] and Cu(NCS)[sub 2] are reported. The strong two-dimensionality of the Fermi surface (FS) is clearly seen by the perfect 1/cos([Theta])-behavior of the dHvA frequency. The distinctive kind of beating and the angular dependence of the dHvA signal in [beta]-(ET)[sub 2]IBr[sub 2] gives clear evidence for a lightly corrugated structure of the FS. Due to the nearly cylinder-shape of the FS the bare band structure effective mass, m[sub b], also shows a 1/cos([Theta])-dependence which is responsible for spin splitting zeros at certain angles. At these points, where the fundamental amplitude of the dHvA signal is vanishing, m[sub b] could exactly be determined and by comparison with the independently measured cyclotron effective mass the electron-phonon coupling constant could be estimated. 17 refs, 5 figs.