Fate of corrosion products released from stainless steel in marine sediments and seawater. Part 4: Hatteras abyssal red clay

A study in which neutron-activated 347 stainless steel was exposed to surficial sediment from a site in the Hatteras Abyssal Plain of the Northwest Atlantic Ocean is described. This sediment consists of approx. 20% CaCO/sub 3/, which could lead to the formation of calcareous scale on the metal surfa...

Full description

Bibliographic Details
Main Author: Schmidt, R.L.
Language:unknown
Published: 2011
Subjects:
Online Access:http://www.osti.gov/servlets/purl/5106354
https://www.osti.gov/biblio/5106354
https://doi.org/10.2172/5106354
Description
Summary:A study in which neutron-activated 347 stainless steel was exposed to surficial sediment from a site in the Hatteras Abyssal Plain of the Northwest Atlantic Ocean is described. This sediment consists of approx. 20% CaCO/sub 3/, which could lead to the formation of calcareous scale on the metal surface and reduce the corrosion rate. The distribution of indigenous metals among different chemical fractions shows that extractable Cr, Mn, Fe, Co, and Zn were associated with amorphous Mn and Fe oxides. Most of the remaining extractable Cr, and about a third of the extractable Cu appear to have been weakly complexed. Major fractions (25 to 36%) of extractable Mn, Co and Ni were present as adsorbed cations. Organic complexation appears to account for a large amount of extractable Fe, Ni, Cu and Zn. Neutron-activated 347 stainless steel specimens were exposed to sediment slurry under aerobic and non-oxygenated conditions for a period of 94 days. The redox potential measurements for air-sparged and N/sub 2/, CO/sub 2/-sparged sediment slurries were +410 and +60 mv, respectively. The presence of 0/sub 2/ produced increased amounts of corrosion products. Chemical extraction showed that relatively labile substances constituted about 84% of the /sup 60/Co activity released in aerated sediment. Relatively labile substances constitute about 82% of the total /sup 60/Co activity released under non-oxygenated conditions. A large fraction of /sup 60/Co which was in the soluble or easily dissolved forms under non-oxygenated conditions appears to have been more strongly adsorbed to the sediment under aerated conditions.