Fabrication Development for SPT-SLIM, a Superconducting Spectrometer for Line Intensity Mapping

Line Intensity Mapping (LIM) is a new observational technique that uses low-resolution observations of line emission to efficiently trace the large-scale structure of the Universe out to high redshift. Common mm/sub-mm emission lines are accessible from ground-based observatories, and the requiremen...

Full description

Bibliographic Details
Published in:IEEE Transactions on Applied Superconductivity
Main Author: Cecil, T.
Language:unknown
Published: 2023
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1973618
https://www.osti.gov/biblio/1973618
https://doi.org/10.1109/TASC.2023.3259919
Description
Summary:Line Intensity Mapping (LIM) is a new observational technique that uses low-resolution observations of line emission to efficiently trace the large-scale structure of the Universe out to high redshift. Common mm/sub-mm emission lines are accessible from ground-based observatories, and the requirements on the detectors for LIM at mm-wavelengths are well matched to the capabilities of large-format arrays of superconducting sensors. We describe the development of an R = 300 on-chip superconducting filter-bank spectrometer covering the 120--180 GHz band optimized for future mm-LIM experiments, focusing on SPT-SLIM, a pathfinder LIM instrument for the South Pole Telescope. Radiation is coupled from the telescope optical system to the spectrometer chip via an array of feedhorn-coupled orthomode transducers. Superconducting microstrip transmission lines then carry the signal to an array of channelizing half-wavelength resonators, and the output of each spectral channel is sensed by a lumped element kinetic inductance detector (leKID). Key areas of development include incorporating new low-loss dielectrics to improve both the achievable spectral resolution and optical efficiency and development of a robust fabrication process to create a galvanic connection between ultra-pure superconducting thin-films to realize multi-material (hybrid) leKIDs. We provide an overview of the spectrometer design, fabrication process, and prototype devices.