Long-range transported continental aerosol in the eastern North Atlantic: three multiday event regimes influence cloud condensation nuclei

The eastern North Atlantic (ENA) is a region dominated by pristine marine environment and subtropical marine boundary layer clouds. Under unperturbed atmospheric conditions, the regional aerosol regime in the ENA varies seasonally due to different seasonal surface-ocean biogenic emissions, removal p...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Gallo, Francesca, Uin, Janek, Sanchez, Kevin J., Moore, Richard H., Wang, Jian, Wood, Robert, Mei, Fan, Flynn, Connor, Springston, Stephen, Azevedo, Eduardo B., Kuang, Chongai, Aiken, Allison C.
Language:unknown
Published: 2023
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1969241
https://www.osti.gov/biblio/1969241
https://doi.org/10.5194/acp-23-4221-2023
Description
Summary:The eastern North Atlantic (ENA) is a region dominated by pristine marine environment and subtropical marine boundary layer clouds. Under unperturbed atmospheric conditions, the regional aerosol regime in the ENA varies seasonally due to different seasonal surface-ocean biogenic emissions, removal processes, and meteorological regimes. However, during periods when the marine boundary layer aerosol in the ENA is impacted by particles transported from continental sources, aerosol properties within the marine boundary layer change significantly, affecting the concentration of cloud condensation nuclei (CCN). Here, we investigate the impact of long-range transported continental aerosol on the regional aerosol regime in the ENA using data collected at the U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) user facility on Graciosa Island in 2017 during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) campaign. We develop an algorithm that integrates number concentrations of particles with optical particle dry diameter (D p ) between 100 and 1000 nm, single scattering albedo, and black carbon concentration to identify multiday events (with duration >24 consecutive hours) of long-range continental aerosol transport in the ENA. In 2017, we detected nine multiday events of long-range transported particles that correspond to ~7.5 % of the year. For each event, we perform HYSPLIT 10 d backward trajectories analysis, and we evaluate CALIPSO aerosol products to assess, respectively, the origins and compositions of aerosol particles arriving at the ENA site. Subsequently, we group the events into three categories, (1) mixture of dust and marine aerosols, (2) mixture of marine and polluted continental aerosols from industrialized areas, and (3) biomass burning aerosol from North America and Canada, and we evaluate their influence on aerosol population and cloud condensation nuclei in terms of potential activation fraction and concentrations at supersaturation of 0.1 % and 0.2 ...