Application of machine learning to characterize gas hydrate reservoirs in Mackenzie Delta (Canada) and on the Alaska north slope (USA)

Here, artificial neural network-trained models were used to predict gas hydrate saturation distributions in permafrost-associated deposits in the Eileen Gas Hydrate Trend on the Alaska North Slope (ANS), USA and at the Mallik research site in the Beaufort-Mackenzie Basin, Northwest Territories, Cana...

Full description

Bibliographic Details
Published in:Computational Geosciences
Main Authors: Chong, Leebyn, Singh, Harpreet, Creason, C. Gabriel, Seol, Yongkoo, Myshakin, Evgeniy M.
Language:unknown
Published: 2023
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1888241
https://www.osti.gov/biblio/1888241
https://doi.org/10.1007/s10596-022-10151-9
Description
Summary:Here, artificial neural network-trained models were used to predict gas hydrate saturation distributions in permafrost-associated deposits in the Eileen Gas Hydrate Trend on the Alaska North Slope (ANS), USA and at the Mallik research site in the Beaufort-Mackenzie Basin, Northwest Territories, Canada. The database of Logging-While-Drilling (LWD) and wireline logs collected at five wells (Mount Elbert, Ignik Sikumi, and Kuparuk 7–11–12 wells at ANS, plus 2L-38 and 5L-38 wells at the Mallik research site) includes more than 10,000 depth points, which were used for training, validation, and testing the machine learning (ML) models. Data used in training the ML models include the well logs of density, porosity, electrical resistivity, gamma radiation, and acoustic wave velocity measurements. Combinations of two or three out of these five well logs were found to reliably predict the gas hydrate saturation with accuracy varying between 80 and 90% when compared to the gas hydrate saturations derived from Nuclear Magnetic Resonance (NMR)-based technique. The ML models trained on data from three ANS wells achieved high fidelity predictions of gas hydrate saturation at the Mallik site. The results obtained in this study indicate that ML models trained on data from one geological basin can successfully predict key reservoir parameters for permafrost-associated gas hydrate accumulations within another basin. A generalized approach for selecting a well log combination that can improve model accuracy is discussed. Overall, the study outcome supports earlier work demonstrating that ML models trained on non-NMR well logs are a viable alternative to physics-driven methods for predicting gas hydrate saturations.