Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA)

With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in clima...

Full description

Bibliographic Details
Published in:Bulletin of the American Meteorological Society
Main Authors: Wang, Jian, Wood, Rob, Jensen, Michael P., Chiu, J. Christine, Liu, Yangang, Lamer, Katia, Desai, Neel, Giangrande, Scott E., Knopf, Daniel A., Kollias, Pavlos, Laskin, Alexander, Liu, Xiaohong, Lu, Chunsong, Mechem, David, Mei, Fan, Starzec, Mariusz, Tomlinson, Jason, Wang, Yang, Yum, Seong Soo, Zheng, Guangjie, Aiken, Allison C., Azevedo, Eduardo B., Blanchard, Yann, China, Swarup, Dong, Xiquan, Gallo, Francesca, Gao, Sinan, Ghate, Virendra P., Glienke, Susanne, Goldberger, Lexie, Hardin, Joseph C., Kuang, Chongai, Luke, Edward P., Matthews, Alyssa A., Miller, Mark A., Moffet, Ryan, Pekour, Mikhail, Schmid, Beat, Sedlacek, Arthur J., Shaw, Raymond A., Shilling, John E., Sullivan, Amy, Suski, Kaitlyn, Veghte, Daniel P., Weber, Rodney, Wyant, Matt, Yeom, Jaemin, Zawadowicz, Maria, Zhang, Zhibo
Language:unknown
Published: 2023
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1837834
https://www.osti.gov/biblio/1837834
https://doi.org/10.1175/bams-d-19-0220.1
Description
Summary:With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, the ENA is periodically impacted by continental aerosols, making it an excellent location to study the cloud condensation nuclei (CCN) budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. The Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) campaign was motivated by the need of comprehensive in-situ measurements for improving the understanding of marine boundary layer CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation. The airborne deployments took place from June 21 to July 20, 2017 and January 15 to February 18, 2018 in the Azores. The flights were designed to maximize the synergy between in-situ airborne measurements and ongoing long-term observations at a ground site. Here we present measurements, observation strategy, meteorological conditions during the campaign, and preliminary findings. Lastly, we discuss future analyses and modeling studies that improve the understanding and representation of marine boundary layer aerosols, clouds, precipitation, and the interactions among them.