Indirect Measurements of the Composition of Ultrafine Particles in the Arctic Late-Winter

In this work, we present indirect measurements of size-resolved ultrafine particle composition conducted during the Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) Campaign in Utqiagvik, Alaska, during March 2009. This study focuses on measurements of size-resolved particle hygroscopicity and volatility m...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Myers, Deanna C., Lawler, Michael J., Mauldin, Roy L., Sjostedt, Steven, Dubey, Manvendra, Abbatt, Jonathan, Smith, James N.
Language:unknown
Published: 2023
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1837009
https://www.osti.gov/biblio/1837009
https://doi.org/10.1029/2021jd035428
Description
Summary:In this work, we present indirect measurements of size-resolved ultrafine particle composition conducted during the Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) Campaign in Utqiagvik, Alaska, during March 2009. This study focuses on measurements of size-resolved particle hygroscopicity and volatility measured over two periods of the campaign. During a period that represents background conditions in this location, particle hygroscopic growth factors (HGF) at 90% relative humidity ranged from 1.45 to 1.51, which combined with volatility measurements suggest a mixture of ~30% ammoniated sulfates and ~70% oxidized organics. Two separate regional ultrafine particle growth events were also observed during this campaign. Event 1 coincided with elevated levels of H2SO4 and solar radiation. These particles were highly hygroscopic (HGF = 2.1 for 35 nm particles), but were almost fully volatilized at 160 °C. The air masses associated with both events originated over the Arctic Ocean. Event 1 was influenced by the upper marine boundary layer (200–350 m AGL), while Event 2 spent more time closer to the surface (50–150 m AGL) and over open ocean leads, suggesting marine influence in growth processes. Event 2 particles were slightly less hygroscopic (HGF = 1.94 for 35 nm and 1.67 for 15 nm particles), and similarly volatile. We hypothesize that particles formed during both events contained 60–70% hygroscopic salts by volume, with the balance for Event 1 being sulfates and oxidized organics for Event 2. These observations suggest that primary sea spray may be an important initiator of ultrafine particle formation events in the Arctic late-winter, but a variety of processes may be responsible for condensational growth.