Population Genetics of Sugar Kelp Throughout the Northeastern United States Using Genome-Wide Markers

An assessment of genetic diversity of marine populations is critical not only for the understanding and preserving natural biodiversity but also for its commercial potential. As commercial demand rises for marine resources, it is critical to generate baseline information for monitoring wild populati...

Full description

Bibliographic Details
Published in:Frontiers in Marine Science
Main Authors: Mao, Xiaowei Chinese Academy of Sciences , Beijing . Inst. of Vertebrate Paleontology and Paleoanthropology. Key Lab. of Vertebrate Evolution and Human Origins, Chinese Academy of Sciences , Beijing . Center for Excellence in Life and Paleoenvironment; Cornell Univ., Ithaca, NY . School of Integrative Plant Sciences. Section on Plant Breeding and Genetics, Augyte, Simona Univ. of Connecticut, Samford, CT . Dept. of Ecology & Evolutionary Biology, Huang, Mao Cornell Univ., Ithaca, NY . School of Integrative Plant Sciences. Section on Plant Breeding and Genetics, Hare, Matthew P. Univ. of Connecticut, Samford, CT . Dept. of Natural Resources, Bailey, David Woods Hole Oceanographic Institution, Woods Hole, MA . Applied Ocean Physics and Engineering, Umanzor, Schery Univ. of Connecticut, Samford, CT . Dept. of Ecology & Evolutionary Biology, Marty-Rivera, Michael Univ. of Connecticut, Samford, CT . Dept. of Ecology & Evolutionary Biology, Robbins, Kelly R. Cornell Univ., Ithaca, NY . School of Integrative Plant Sciences. Section on Plant Breeding and Genetics, Yarish, Charles Univ. of Connecticut, Samford, CT . Dept. of Ecology & Evolutionary Biology, Lindell, Scott Woods Hole Oceanographic Institution, Woods Hole, MA . Applied Ocean Physics and Engineering, Jannink, Jean-Luc Cornell Univ., Ithaca, NY . School of Integrative Plant Sciences. Section on Plant Breeding and Genetics; US Dept. of Agriculture , Ithaca, NY . Agricultural Research Service
Language:unknown
Published: 2023
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1799113
https://www.osti.gov/biblio/1799113
https://doi.org/10.3389/fmars.2020.00694
Description
Summary:An assessment of genetic diversity of marine populations is critical not only for the understanding and preserving natural biodiversity but also for its commercial potential. As commercial demand rises for marine resources, it is critical to generate baseline information for monitoring wild populations. Furthermore, anthropogenic stressors on the coastal environment, such as warming sea temperatures and overharvesting of wild populations, are leading to the destruction of keystone marine species such as kelps. In this study, we conducted a fine-scale genetic analysis using genome-wide high-density markers on Northwest Atlantic sugar kelp. The population structure for a total of 149 samples from the Gulf of Maine (GOM) and Southern New England (SNE) was investigated using AMOVA, FST, admixture, and PCoA. Genome-wide association analyses were conducted for six morphological traits, and the extended Lewontin and Krakauer (FLK) test was used to detect selection signatures. Our results indicate that the GOM region is more heterogeneous than SNE. These two regions have large genetic difference (between-location FST ranged from 0.21 to 0.32) and were separated by Cape Cod, which is known to be the biogeographic barrier for other taxa. We detected one significant SNP (P = 2.03 × 10 -7 ) associated with stipe length, and 248 SNPs with higher-than-neutral differentiation. The findings of this study provide baseline knowledge on sugar kelp population genetics for future monitoring, managing and potentially restoring wild populations, as well as assisting in selective breeding to improve desirable traits for future commercialization opportunities.