C-FOG: Life of Coastal Fog

C-FOG is a comprehensive bi-national project dealing with the formation, persistence, and dissipation (life cycle) of fog in coastal areas (coastal fog) controlled by land, marine, and atmospheric processes. Given its inherent complexity, coastal-fog literature has mainly focused on case studies, an...

Full description

Bibliographic Details
Published in:Bulletin of the American Meteorological Society
Main Authors: Fernando, H. S., Gultepe, I., Dorman, C., Pardyjak, E., Wang, Q., Hoch, S. W., Richter, D., Creegan, E., Gaberšek, S., Bullock, T., Hocut, C., Chang, R., Alappattu, D., Dimitrova, R., Flagg, D., Grachev, A., Krishnamurthy, R., Singh, D. K., Lozovatsky, I., Nagare, B., Sharma, A., Wagh, S., Wainwright, C., Wroblewski, M., Yamaguchi, R., Bardoel, S., Coppersmith, R. S., Chisholm, N., Gonzalez, E., Gunawardena, N., Hyde, O., Morrison, T., Olson, A., Perelet, A., Perrie, W., Wang, S., Wauer, B.
Language:unknown
Published: 2022
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1779886
https://www.osti.gov/biblio/1779886
https://doi.org/10.1175/bams-d-19-0070.1
Description
Summary:C-FOG is a comprehensive bi-national project dealing with the formation, persistence, and dissipation (life cycle) of fog in coastal areas (coastal fog) controlled by land, marine, and atmospheric processes. Given its inherent complexity, coastal-fog literature has mainly focused on case studies, and there is a continuing need for research that integrates across processes (e.g., air–sea–land interactions, environmental flow, aerosol transport, and chemistry), dynamics (two-phase flow and turbulence), microphysics (nucleation, droplet characterization), and thermodynamics (heat transfer and phase changes) through field observations and modeling. Central to C-FOG was a field campaign in eastern Canada from 1 September to 8 October 2018, covering four land sites in Newfoundland and Nova Scotia and an adjacent coastal strip transected by the Research Vessel Hugh R. Sharp . An array of in situ, path-integrating, and remote sensing instruments gathered data across a swath of space–time scales relevant to fog life cycle. Satellite and reanalysis products, routine meteorological observations, numerical weather prediction model (WRF and COAMPS) outputs, large-eddy simulations, and phenomenological modeling underpin the interpretation of field observations in a multiscale and multiplatform framework that helps identify and remedy numerical model deficiencies. An overview of the C-FOG field campaign and some preliminary analysis/findings are presented in this paper.