Modeling Functional Organic Chemistry in Arctic Rivers: An Idealized Siberian System

Rivers of the Arctic will become ever more important for the global climate, since they carry a majority of continental dissolved organic carbon flux into the rapidly changing polar ocean. Aqueous organics comprise a wide array of functional groups, several of which are likely to impact coastal and...

Full description

Bibliographic Details
Published in:Atmosphere
Main Authors: Jayasinghe, Amadini, Elliott, Scott, Piliouras, Anastasia, Kinney, Jaclyn Clement, Gibson, Georgina, Jeffery, Nicole, Hoffman, Forrest, Kumar, Jitendra, Wingenter, Oliver W.
Language:unknown
Published: 2021
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1684675
https://www.osti.gov/biblio/1684675
https://doi.org/10.3390/atmos11101090
Description
Summary:Rivers of the Arctic will become ever more important for the global climate, since they carry a majority of continental dissolved organic carbon flux into the rapidly changing polar ocean. Aqueous organics comprise a wide array of functional groups, several of which are likely to impact coastal and open water biophysical properties. Light attenuation, interfacial films, aerosol formation, gas release and momentum exchange can all be cited. We performed Lagrangian kinetic modeling for the evolution of riverine organic chemistry as the molecules in question make their way from the highlands to Arctic outlets. Classes as diverse as the proteins, sugars, lipids, re-condensates, humics, bio-tracers and small volatiles are all included. Our reduced framework constitutes an idealized northward flow driving a major hydrological discharge rate and primarily representing the Russian Lena. Mountainous, high solute and tundra sources are all simulated, and they meet up at several points between soil and delta process reactors. Turnover rates are parameterized beginning with extrapolated coastal values imposed along a limited tributary network, with connections between different terrestrial sub-ecologies. Temporal variation of our total dissolved matter most closely resembles the observations when we focus on the restricted removal and low initial carbon loads, suggesting relatively slow transformation along the water course. Thus, channel combinations and mixing must play a dominant role. Nevertheless, microbial and photochemical losses help determine the final concentrations for most species. Chemical evolution is distinct for the various functionalities, with special contributions from pre- and post-reactivity in soil and delta waters. Several functions are combined linearly to represent the collective chromophoric dissolved matter, characterized here by its absorption. Tributaries carry the signature of lignin phenols to segregate tundra versus taiga sources, and special attention is paid to the early then marine ...