Timing and duration of hydrological transitions in Arctic polygonal ground from stable isotopes

Both simulations and experiments have suggested that Cu/CuZr nanolaminates are stronger and more ductile than their individual constituents due to interface-mediated interactions between plasticity carriers. In this work, we use the effective-temperature theories of dislocation and amorphous shear-t...

Full description

Bibliographic Details
Published in:Hydrological Processes
Main Authors: Conroy, Nathan Alec, Newman, Brent David, Heikoop, Jeffrey Martin, Perkins, George Bradford, Feng, Xiahong, Wilson, Cathy Jean, Wullschleger, Stan Duane
Language:unknown
Published: 2021
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1669774
https://www.osti.gov/biblio/1669774
https://doi.org/10.1002/hyp.13623
Description
Summary:Both simulations and experiments have suggested that Cu/CuZr nanolaminates are stronger and more ductile than their individual constituents due to interface-mediated interactions between plasticity carriers. In this work, we use the effective-temperature theories of dislocation and amorphous shear-transformation-zone (STZ) plasticity to study amorphous-crystalline interface (ACI)-mediated plasticity in Cu/CuZr nanolaminates under mechanical straining. The model is shown to capture reasonably well the measured deformation response when strained either in tension parallel to or in compression normal to the amorphous-crystalline interface. Our analysis indicates that increasing CuZr or decreasing Cu layer thickness increases the maximum flow stress for both perpendicular and parallel loading cases. Furthermore, for the cases of parallel and perpendicular loading, the maximum flow stress values are 3.4 and 2.5GPa, respectively. Furthermore, increasing the strain rate for the parallel loading case decreases the slip strain in the amorphous and crystalline layers. Additionally, for the perpendicular loading case, an increase in strain rate decreases the amorphous layer slip but increases the crystalline layer slip. In all slip strain analyses, maximum slip strain occurs at the ACI, thus indicating that plasticity carriers accumulate at the interface and are absorbed there. These findings indicate a significant anisotropy in strength with greater sensitivity to layer thickness for the case of tensile loading parallel to the ACI. Further findings signify that slip strain is more sensitive when the nanolaminate is compressed perpendicular to the ACI.