Decadal Covariability of the Northern Wintertime Land Surface Temperature and Atmospheric Circulation

The decadal covariability of northern wintertime land surface temperature and 500-hPa geopotential anomalies is examined using the National Centers for Environmental Prediction–National Center for Atmospheric Research and the Twentieth-Century Reanalyses over the twentieth century and a 996-yr prein...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Yu, B., Wang, X. L., Zhang, X. B., Cole, J., Feng, Y.
Language:unknown
Published: 2021
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1565237
https://www.osti.gov/biblio/1565237
https://doi.org/10.1175/jcli-d-13-00266.1
Description
Summary:The decadal covariability of northern wintertime land surface temperature and 500-hPa geopotential anomalies is examined using the National Centers for Environmental Prediction–National Center for Atmospheric Research and the Twentieth-Century Reanalyses over the twentieth century and a 996-yr preindustrial climate simulation from the Canadian Earth System Model. Based on the reanalysis data, the covariability is dominated by two leading maximum covariance analysis (MCA) modes. MCA1 is characterized by temperature anomalies over most of Canada, the eastern United States, Mexico, and Eurasian mid- to high latitudes, accompanied by anomalies of opposite sign elsewhere over northern landmasses. MCA2 features temperature anomalies over most of North America, Eurasia, and Greenland with opposite anomalies elsewhere. In the upper troposphere the synoptic vorticity fluxes reinforce the anomalous circulation, while in the lower troposphere advection by the anomalous mean flow offsets the eddy forcing and maintains the decadal temperature perturbation. The MCA1-associated variability has a broad spectrum over decadal–interdecadal time scales, while the MCA2-related variability has a significant power peak around 20 yr. The change of temperature and geopotential trends around 1990 tends to be a decadal-scale shift in winter and has significant features of the leading mode of the decadal covariability. The climate model has broadly similar decadal covariability, including the leading MCA patterns as well as the temporal evolution of the patterns. The decadal temperature and geopotential anomalies primarily covary with the North Atlantic Oscillation but also with the variability of the North Pacific index, while the Southern Oscillation index variability tends to be the least important predictor for the northern decadal temperature and geopotential anomalies.