Calibration of Hydrophone Stations: Lessons Learned from the Ascension Island Experiment

Calibration of hydroacoustic stations for nuclear explosion monitoring is important for increasing monitoring capability and confidence from newly installed stations and from existing stations. Calibration of hydroacoustic stations is herein defined as the near-field precision location of the hydrop...

Full description

Bibliographic Details
Main Authors: Harben, P E, Rodgers, A J
Language:unknown
Published: 2021
Subjects:
Online Access:http://www.osti.gov/servlets/purl/15002082
https://www.osti.gov/biblio/15002082
Description
Summary:Calibration of hydroacoustic stations for nuclear explosion monitoring is important for increasing monitoring capability and confidence from newly installed stations and from existing stations. Calibration of hydroacoustic stations is herein defined as the near-field precision location of the hydrophones and determination of the amplitude response; and the regional-scale calibration of acoustic traveltimes, bathymetric shadowing, diffraction, and reflection as recorded at a particular station. An important type of calibration not considered here is ocean-basin-scale calibration of a hydroacoustic monitoring system. To understand how to best conduct hydroacoustic station calibrations, an experiment was conducted in May 1999 at Ascension Island in the South Atlantic Ocean. The experiment made use of a British oceanographic research vessel towing an airgun array and collected data over three MILS hydrophones that were in use by the National Data Center and the International Data Center. From the towed airgun data we were able to determine the location for each of the three hydrophones to accuracy better than 100 meters in latitude, longitude, and depth. The agreement with the nominal locations was excellent in depth and to within 1 km in latitude and longitude. The depths determined for the hydrophones and the ocean bottom depths determined from the ship's sonar system force the conclusion that all three hydrophones are located at or near the ocean bottom. Amplitude frequency response of the hydrophones was also calibrated using a calibrated temporarily deployed hydrophone to determine the airgun source function. With the source function known, the amplitude and phase response of the hydrophones could be deconvolved from the recorded waveforms provided a ''pure'' source waveform arrival is identified on the recording. Unfortunately, since the hydrophones are located near the ocean bottom, the recording is contaminated by reflections and scattered energy, making a reliable deconvolution impossible. Instead, ...