Tundra is a consistent source of CO 2 at a site with progressive permafrost thaw during 6 years of chamber and eddy covariance measurements: Tundra CO 2 Fluxes

Current and future warming of high-latitude ecosystems will play an important role in climate change through feedbacks to the global carbon cycle. This study compares 6 years of CO 2 flux measurements in moist acidic tundra using autochambers and eddy covariance (Tower) approaches. Here, we found th...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Biogeosciences
Main Authors: Celis, Gerardo, Mauritz, Marguerite, Bracho, Rosvel, Salmon, Verity G., Webb, Elizabeth E., Hutchings, Jack, Natali, Susan M., Schädel, Christina, Crummer, Kathryn G., Schuur, Edward A. G.
Language:unknown
Published: 2022
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1376643
https://www.osti.gov/biblio/1376643
https://doi.org/10.1002/2016JG003671
Description
Summary:Current and future warming of high-latitude ecosystems will play an important role in climate change through feedbacks to the global carbon cycle. This study compares 6 years of CO 2 flux measurements in moist acidic tundra using autochambers and eddy covariance (Tower) approaches. Here, we found that the tundra was an annual source of CO 2 to the atmosphere as indicated by net ecosystem exchange using both methods with a combined mean of 105 ± 17 g CO 2 C m-2 y-1 across methods and years (Tower 87 ± 17 and Autochamber 123 ± 14). Furthermore, the difference between methods was largest early in the observation period, with Autochambers indicated a greater CO 2 source to the atmosphere. This discrepancy diminished through time, and in the final year the Autochambers measured a greater sink strength than tower. Active layer thickness was a significant driver of net ecosystem carbon exchange, gross ecosystem primary productivity, and Reco and could account for differences between Autochamber and Tower. The stronger source initially attributed lower summer season gross primary production (GPP) during the first 3 years, coupled with lower ecosystem respiration (Reco) during the first year. The combined suppression of GPP and Reco in the first year of Autochamber measurements could be the result of the experimental setup. Root damage associated with Autochamber soil collar installation may have lowered the plant community's capacity to fix C, but recovered within 3 years. And while this ecosystem was a consistent CO 2 sink during the summer, CO 2 emissions during the nonsummer months offset summer CO 2 uptake each year.