Constraints on the CMB temperature evolution using multiband measurements of the Sunyaev-Zel'dovich effect with the South Pole Telescope

The adiabatic evolution of the temperature of the cosmic microwave background (CMB) is a key prediction of standard cosmology. We study deviations from the expected adiabatic evolution of the CMB temperature of the form T(z) = T 0 (1 + z) 1 - α using measurements of the spectrum of the Sunyaev–Zel&#...

Full description

Bibliographic Details
Published in:Monthly Notices of the Royal Astronomical Society
Main Authors: Saro, A., Liu, J., Mohr, J. J., Aird, K. A., Ashby, M. L. N., Bayliss, M., Benson, B. A., Bleem, L. E., Bocquet, S., Brodwin, M., Carlstrom, J. E., Chang, C. L., Chiu, I., Cho, H. M., Clocchiatti, A., Crawford, T. M., Crites, A. T., de Haan, T., Desai, S., Dietrich, J. P., Dobbs, M. A., Dolag, K., Dudley, J. P., Foley, R. J., Gangkofner, D., George, E. M., Gladders, M. D., Gonzalez, A. H., Halverson, N. W., Hennig, C., Hlavacek-Larrondo, J., Holzapfel, W. L., Hrubes, J. D., Jones, C., Keisler, R., Lee, A. T., Leitch, E. M., Lueker, M., Luong-Van, D., Mantz, A., Marrone, D. P., McDonald, M., McMahon, J. J., Mehl, J., Meyer, S. S., Mocanu, L., Montroy, T. E., Murray, S. S., Nurgaliev, D., Padin, S., Patej, A., Pryke, C., Reichardt, C. L., Rest, A., Ruel, J., Ruhl, J. E., Saliwanchik, B. R., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Spieler, H. G., Stalder, B., Staniszewski, Z., Stark, A. A., Story, K., van Engelen, A., Vanderlinde, K., Vieira, J. D., Vikhlinin, A., Williamson, R., Zahn, O., Zenteno, A.
Language:unknown
Published: 2022
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1331799
https://www.osti.gov/biblio/1331799
https://doi.org/10.1093/mnras/stu575
Description
Summary:The adiabatic evolution of the temperature of the cosmic microwave background (CMB) is a key prediction of standard cosmology. We study deviations from the expected adiabatic evolution of the CMB temperature of the form T(z) = T 0 (1 + z) 1 - α using measurements of the spectrum of the Sunyaev–Zel'dovich effect with the South Pole Telescope (SPT). We present a method for using the ratio of the Sunyaev–Zel'dovich signal measured at 95 and 150 GHz in the SPT data to constrain the temperature of the CMB. We demonstrate that this approach provides unbiased results using mock observations of clusters from a new set of hydrodynamical simulations. We apply this method to a sample of 158 SPT-selected clusters, spanning the redshift range 0.05 < z < 1.35, and measure $\alpha = 0.017^{+0.030}_{-0.028}$, consistent with the standard model prediction of α = 0. In combination with other published results, we find α = 0.005 ± 0.012, an improvement of ~10 percent over published constraints. This measurement also provides a strong constraint on the effective equation of state in models of decaying dark energy w eff = -0.994 ± 0.010.