Hydrate characterization research overview

Gas hydrate research has been focused primarily on the development of a basic understanding of hydrate formation and dissociation in the laboratory, as well as in the field. Laboratory research on gas hydrates characterized the physical system, which focused on creating methane hydrates samples, tet...

Full description

Bibliographic Details
Main Author: Malone, R.D.
Language:unknown
Published: 2008
Subjects:
Online Access:http://www.osti.gov/servlets/purl/10161680
https://www.osti.gov/biblio/10161680
Description
Summary:Gas hydrate research has been focused primarily on the development of a basic understanding of hydrate formation and dissociation in the laboratory, as well as in the field. Laboratory research on gas hydrates characterized the physical system, which focused on creating methane hydrates samples, tetrahydrofuran (THF) hydrate samples, consolidated rock samples, frost base mixtures, water/ice-base mixtures, and water-base mixtures. Laboratory work produced measurements of sonic velocity and electrical resistivity of hydrates. As work progressed, areas, such as the Gulf of Mexico and the Guatemala Trench, where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for detailed investigation. The testing of samples and recovered cores from such areas provided information for detection of hydrate formations in the natural environment. Natural gas hydrate samples have been tested for thermal properties, dissociation properties, fracture mechanics, and optical properties. Acoustical properties were investigated both in the laboratory and, as possible, in the field. Sonic velocity and electrical resistivity measurements will continue to be obtained. These activities have been undertaken in hydrate deposits on Alaska`s North Slope, the Gulf of Mexico and the US East coast offshore, as well as other gas hydrate target areas.