Land-cover, climate and fjord morphology drive differences in organic matter and nutrient dynamics in two contrasting northern river-fjord systems

Climate and land-use changes are leading to impacts on individual ecosystems as well as shifts in transfer dynamics between interconnected systems. At the land-ocean interface, changes in riverine inputs of organic matter (OM) and nutrients have the potential to lead to shifts in coastal carbon and...

Full description

Bibliographic Details
Published in:Estuarine, Coastal and Shelf Science
Main Authors: Schultze, Sabrina, Andersen, Tom, Hessen, Dag Olav, Ruus, Anders, Borgå, Katrine, Poste, Amanda
Format: Article in Journal/Newspaper
Language:English
Published: 2022
Subjects:
Online Access:http://hdl.handle.net/10852/94555
http://urn.nb.no/URN:NBN:no-97073
https://doi.org/10.1016/j.ecss.2022.107831
Description
Summary:Climate and land-use changes are leading to impacts on individual ecosystems as well as shifts in transfer dynamics between interconnected systems. At the land-ocean interface, changes in riverine inputs of organic matter (OM) and nutrients have the potential to lead to shifts in coastal carbon and nutrient cycling with consequences for ecosystem structure and function. In this study, we assess OM and nutrient dynamics for two contrasting Norwegian river-to-fjord systems: a boreal system with a forested catchment draining into a narrow fjord (‘narrow boreal system’), and a subarctic system where lowland forests and mountainous regions drain into a broad fjord (‘broad subarctic system’). We characterized seasonal organic carbon and nutrient concentrations and DOM absorption properties for samples collected along transects from river to outer fjord during 2015/2016. While differences in catchment properties drove contrasts in river chemistry between the two study rivers, fjord morphology and hydrodynamics as well as dissolved organic carbon (DOC) and nutrient concentrations in marine receiving waters predicted water-chemistry patterns along the transect. The narrow boreal system, with high riverine DOC and nutrient concentrations, was structured mainly by a horizontal salinity gradient from river to outer fjord, with limited impact of seasonality. In contrast, the broad subarctic system tended to be dominated by vertical salinity stratification, with strong between-date differences in surface water salinity linked to seasonality in river discharge. These dynamics were also reflected in the strong horizontal gradients in DOC, nutrients and DOM properties in the narrow boreal system, in contrast to the broad subarctic system, where strong seasonality paired with a lack of strong contrast between riverine and marine concentrations of DOC and most nutrients led to an uncoupling between salinity and other water chemistry variables. In the narrow boreal system, terrestrial OM dominated both the particulate and dissolved ...