Biological production in the NE Pacific and its influence on air-sea CO2 flux: Evidence from dissolved oxygen isotopes and O2/Ar

We determine rates of gross photosynthetic O₂ production (GOP) and net community O₂ production (NCP) using the triple oxygen isotope and O₂/Ar approach on two spring and two late summer meridional transects of the NE Pacific. Observed GOP and NCP in the subtropical (89 ± 9 and 8.3 ± 1.3 mmol O₂ m⁻²...

Full description

Bibliographic Details
Main Authors: Juranek, L. W., Quay, P. D., Feely, R. A., Lockwood, D., Karl, D. M., Church, M. J.
Other Authors: College of Earth, Ocean, and Atmospheric Sciences
Format: Article in Journal/Newspaper
Language:English
unknown
Published: American Geophysical Union
Subjects:
Online Access:https://ir.library.oregonstate.edu/concern/articles/1j92g8835
Description
Summary:We determine rates of gross photosynthetic O₂ production (GOP) and net community O₂ production (NCP) using the triple oxygen isotope and O₂/Ar approach on two spring and two late summer meridional transects of the NE Pacific. Observed GOP and NCP in the subtropical (89 ± 9 and 8.3 ± 1.3 mmol O₂ m⁻² d⁻¹, respectively) and subarctic (193 ± 16 and 16.3 ± 3.8 mmol O₂ m⁻² d⁻¹) were in agreement with rates previously determined at time series stations in each region, validating the regional representativeness of these sites. At the transition zone chlorophyll front (TZCF), which migrates seasonally from 32°N in spring to 40°N in summer, GOP and NCP were elevated by 2-4x compared to adjacent areas. Coincident with the TZCF, increases in surface nitrate concentration and extensive changes in phytoplankton community composition were observed. HPLC pigment data indicated substantial increases in a prymnesiophyte (e. g., coccolithophore) biomarker at the TZCF on a spring and summer cruise, and a diatom biomarker on the spring cruise. Increases in remotely sensed surface particulate inorganic carbon concentration were also observed at the TZCF on all four cruises, indicating that coccolithophore production may contribute to increased productivity at the TZCF. Meridional trends in observed air-sea CO₂ flux on each cruise resembled those of the biologically induced CO₂ flux (NCP), but with an overprinting of the response of air-sea CO₂ exchange to summer warming. A simple carbon budget based on regional CO₂ flux climatology demonstrates the importance of NCP for net annual air-sea CO₂ uptake, although slow air-sea equilibration and seasonal solubility effects obscure this term. Keywords: Zone chlorophyll front, Open ocean, Ecosystem dynamics, Inlet mass spectrometry, Aquatic gross production, Community production, Subarctic Pacific, North Pacific, Subtropical gyre, Note consistent calculation