Deep-sea sediment paleomagnetism : a case study from the North Atlantic

Sedimentary records from the North Atlantic, instrumental in the development of modern paleo-geomagnetic concepts, show a highly variable field even during times of constant polarity. Yet, our understanding of how the magnetization is acquired in the sediments is poorly understood. Primary magnetiza...

Full description

Bibliographic Details
Main Author: Strano, Sarah Elianna
Other Authors: Stoner, Joseph S., Albertani, Roberto, Ozkan-Haller, H. Tuba, Brook, Edward J., Mix, Alan C., College of Earth, Ocean, and Atmospheric Sciences, Oregon State University. Graduate School
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Oregon State University
Subjects:
Online Access:https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/0r967864p
Description
Summary:Sedimentary records from the North Atlantic, instrumental in the development of modern paleo-geomagnetic concepts, show a highly variable field even during times of constant polarity. Yet, our understanding of how the magnetization is acquired in the sediments is poorly understood. Primary magnetizations preserved in deep-sea sediments are known to be acquired through a depositional or possibly, a post-depositional remanent magnetization (DRM or pDRM). A pDRM process implies that the magnetization is locked-in at depth creating an offset between the age of the magnetization and the age of sediment. The process is not currently accounted for in paleomagnetic records despite the wide use of magnetic records to elucidate the timing and rate of change of many paleomagnetic and environmental processes. This dissertation uses seven Northern North Atlantic (NNA) deep-sea sediment cores that were studied by alternating field demagnetization of natural and laboratory imposed remanence on uchannel samples, providing for detailed paleomagnetic and environmental magnetic records. These high-quality Holocene and deglacial magnetic data are combined with independent radiocarbon chronologies to better understand the: (1) magnetic acquisition process, (2) the NNA paleo-geomagnetic signal and (3) the influence of rock magnetic parameters on the sedimentary paleomagnetic record. Under the traditional paradigm of magnetostratigraphy, sediment deposition and magnetization are assumed to occur synchronously and with little to no signal attenuation. In Chapter 2, we compare independently dated Holocene paleomagnetic records from the seven deep-sea sediments cores across the North Atlantic with regional paleo-geomagnetic reconstructions derived from ultra-high resolution sediment records. We find variable delays between the timing of these records, consistent with a magnetization “locked-in” at depth and over an interval that results in smoothing of the geomagnetic signal. Optimization modeling of the post-depositional remanent ...