Greenland ice sheet melt: intercomparison between SSM/I and a regional climate model

The daily melt extent on the Greenland ice sheet can easily be retrieved from satellite observations and therefore is a very useful index to study the surface mass balance (SMB) evolution of the last years. It is also particularly helpful for the validation of a model because there is little in-situ...

Full description

Bibliographic Details
Main Author: Fettweis, Xavier
Format: Conference Object
Language:English
Published: 2004
Subjects:
Online Access:https://orbi.uliege.be/handle/2268/36729
Description
Summary:The daily melt extent on the Greenland ice sheet can easily be retrieved from satellite observations and therefore is a very useful index to study the surface mass balance (SMB) evolution of the last years. It is also particularly helpful for the validation of a model because there is little in-situ observations on the Greenland ice sheet. The remote sensing melt-detection algorithms use the changes in microwave brightness temperatures during snowmelt. The most used one on Greenland is the cross-polarized gradient ratio (XPGR) method from Abdalati and Steffen (1997)*. It was found from a comparison with simulations made by the regional climate model MAR (Modèle Atmosphérique Régional) that the rainfall on the ice sheet in summer perturbs the melt signal detected by XPGR via the 37-Ghz vertical channel. An improved XPGR algorithm was developed. We present here our motivation to modify the XPGR. An intercomparaison between the SSM/I derived observations and the MAR is performed. The aim is to validate our model, in order to study the SMB for future climate. The simulated extent and time evolution of the wet snow zone compares better with satellite derived data when the modified XPGR method is used.