Sensitivity of arctic surface temperatures to sea ice thickness changes using the regional climate model mar

peer reviewed Since the beginning of this century, the Arctic Ocean has experienced a rapid decrease in sea ice extent, which strongly contributes to a pronounced regional climate warming known as “Arctic Amplification”, i.e. two times as large as the global average. Sea ice concentration (SIC) and...

Full description

Bibliographic Details
Main Authors: Lambert, Marius, Kittel, Christoph, Damseaux, Adrien, Fettweis, Xavier
Format: Article in Journal/Newspaper
Language:English
Published: Société Geographique de Liege 2019
Subjects:
MAR
Online Access:https://orbi.uliege.be/handle/2268/257737
https://orbi.uliege.be/bitstream/2268/257737/1/10lambert.pdf
https://doi.org/10.25518/0770-7576.5968
Description
Summary:peer reviewed Since the beginning of this century, the Arctic Ocean has experienced a rapid decrease in sea ice extent, which strongly contributes to a pronounced regional climate warming known as “Arctic Amplification”, i.e. two times as large as the global average. Sea ice concentration (SIC) and sea ice thickness (SIT) mainly control changes in Arctic Ocean surface temperatures by insulating the warmer ocean water from the colder air above. Changes in atmospheric temperatures could perturb the Arctic climate, by affecting the regional atmospheric circulation. In most regional climate models (RCMs), SIC is prescribed from climate reanalyses whereas SIT is fixed in space and time, despite observations of large seasonal variations. Here, we compare climate simulations from the regional climate model MAR forced by the ERA-Interim and OSTIA reanalyses, using fixed SIT, to MAR simulations where SIT and SIC are prescribed by the GLORYS2V4 data set. The set of simulations covers the Arctic-CORDEX domain spanning the whole Arctic Ocean at a spatial resolution of 50 km for the period 2000-2015. This study aims to (1) improve the representation of surface temperatures, wind speed and direction within the Arctic boundary layer simulated by MAR, and to (2) estimate the sensitivity of Arctic surface temperatures and atmospheric circulation to prescribed SIT in MAR. Although our findings highlight the local sensitivity of surface temperatures to SIT changes, they also reveal that there is no clear benefit of using space and time varying SIT data sets to force MAR at 50 km resolution. Depuis le début de ce siècle, l’Océan Arctique a connu une diminution rapide de son étendue de glace de mer, entrainant un réchauffement climatique régional appelé "Amplification Arctique", i.e. deux fois plus marqué que le réchauffement global. En jouant le rôle d’isolant entre l’océan (plus chaud) et l’atmosphère, l’épaisseur et la concentration de glace de mer contrôlent la température à la surface de l’Océan Arctique. Une modification ...