Interest of a Regional Climate Model for doing future projections over the Greenland Ice Sheet

With the aim of evaluating the added value of a regional climate model in downscaled future projections over the Greenland Ice Sheet, we have compared the surface fields (snowfall and summer near-surface temperature) coming from the “best” CMIP5 and CMIP6 global models (GCMs) with these fields simul...

Full description

Bibliographic Details
Main Authors: Fettweis, Xavier, Delhasse, Alison, Agosta, Cécile, Amory, Charles, Lang, Charlotte, Kittel, Christoph
Format: Conference Object
Language:English
Published: 2018
Subjects:
Online Access:https://orbi.uliege.be/handle/2268/227667
https://orbi.uliege.be/bitstream/2268/227667/1/fettweis_polar2018.pdf
Description
Summary:With the aim of evaluating the added value of a regional climate model in downscaled future projections over the Greenland Ice Sheet, we have compared the surface fields (snowfall and summer near-surface temperature) coming from the “best” CMIP5 and CMIP6 global models (GCMs) with these fields simulated by the MAR model forced by the same GCMs. These "best" GCMS were selected according to their ability to simulate the summer temperature at 700 hPa and the general circulation at 500 hPa over Greenland with respect to ERA-Interim over 1980-1999. However, despite their ability to correctly represent the free atmosphere, the selected GCMs present significant biases at the surface of the ice sheet. The comparison shows that MAR is however able to strongly reduce these GCM surface biases. We then forced the lateral boundaries of MAR with ERA-Interim to which we applied temperature corrections of +1°C and +2°C. The outputs were compared to MAR forced by GCM future projections corresponding to a climate about 1 and 2°C warmer than the current climate. The results of the different GCM-forced runs and sensitivity experiments are very similar to each other as the GCMs do not project general circulation changes. Moreover, the sensitivity experiments forced by modified ERA-Interim reveal that the projected SMB decrease is exponentially amplified if the increased occurrence of blocking events over Greenland in summer that has been observed since the 2000´s continues in the future.