Seasonal changes of pCO(2) over a subantarctic Macrocystis kelp bed

peer reviewed The partial pressure of carbon dioxide (pCO(2)), calculated from pH and total alkalinity measurements. was monitored together with chlorophyll a and bacterioplankton biomass in shallow coastal water located inside and outside a giant kelp bed (Macrocystis pyrifera) situated in the Kerg...

Full description

Bibliographic Details
Published in:Polar Biology
Main Authors: Delille, Bruno, Delille, D., Fiala, M., Prevost, C., Frankignoulle, Michel
Format: Article in Journal/Newspaper
Language:English
Published: Springer Science & Business Media B.V. 2000
Subjects:
Online Access:https://orbi.uliege.be/handle/2268/2147
https://doi.org/10.1007/s003000000142
Description
Summary:peer reviewed The partial pressure of carbon dioxide (pCO(2)), calculated from pH and total alkalinity measurements. was monitored together with chlorophyll a and bacterioplankton biomass in shallow coastal water located inside and outside a giant kelp bed (Macrocystis pyrifera) situated in the Kerguelen Archipelago, Southern Ocean. In spite of large changes over a short time-scale pCO(2) variations over the year are large and exhibit a seasonal pattern in which the different stages of the annual biological turnover are well marked. The overall pattern of pCO(2) variations is related to biological activity (development of both photosynthesis and respiration) during almost the whole year. However, physical and thermodynamical constraints exert a strong influence on pCO(2) at meso time-scale (10 days) and/or when biological activity is weak. Macrocystis acts to maintain pCO(2) below saturation almost the whole year and large undersaturations (pCO(2) as low as 20 mu atm) were observed within the kelp bed. Furthermore, primary production of Macrocystis covers a period of 8 similar to 9 months a year from winter to late summer and the kelp bed seems to favour the spring phytoplanktonic bloom. The buffer factor beta indicates that, outside the kelp bed, inorganic carbon dynamics are mainly influenced by air-sea exchange and photosynthesis without calcification. Inside the kelp bed. beta suggests calcification by the epiphytic community. MICROBIOKER - BELCANTO