The recent warming trend in North Greenland
peer reviewed The Arctic is among the fastest warming regions on Earth, but it is also one with limited spatial coverage of multi-decadal instrumental surface air temperature measurements. Consequently, atmospheric reanalyses are relatively unconstrained in this region, resulting in a large spread o...
Published in: | Geophysical Research Letters |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
American Geophysical Union
2017
|
Subjects: | |
Online Access: | https://orbi.uliege.be/handle/2268/209494 https://doi.org/10.1002/2016GL072212 |
Summary: | peer reviewed The Arctic is among the fastest warming regions on Earth, but it is also one with limited spatial coverage of multi-decadal instrumental surface air temperature measurements. Consequently, atmospheric reanalyses are relatively unconstrained in this region, resulting in a large spread of estimated 30-year recent warming trends, which limits their use to investigate the mechanisms responsible for this trend. Here, we present a surface temperature reconstruction over 1982-2011 at NEEM (51∘ W, 77∘ N), in North Greenland, based on the inversion of borehole temperature and inert gas isotope data. We find that NEEM has warmed by 2.7±0.33∘C over the past 30 years, from the long-term 1900-1970 average of -28.55±0.29∘C. The warming trend is principally caused by an increase in downward longwave heat flux. Atmospheric reanalyses underestimate this trend by 17%, underlining the need for more in situ observations to validate reanalyses. |
---|