Cyanobacterial diversity in soil crusts in the Sör Rondane Mountains

Antarctica is the only continent that is dominated by microbial (cyanobacteria and algae) and lower plant (predominantly mosses and lichens) communities. Cyanobacteria are photosynthetic bacteria that require solar light, liquid water, air and some mineral nutrients for growth. They serve as primary...

Full description

Bibliographic Details
Main Authors: Namsaraev, Zorigto, Mano, Marie-José, Wilmotte, Annick
Other Authors: CIP - Centre d'Ingénierie des Protéines - ULiège
Format: Conference Object
Language:English
Published: 2016
Subjects:
Online Access:https://orbi.uliege.be/handle/2268/206797
Description
Summary:Antarctica is the only continent that is dominated by microbial (cyanobacteria and algae) and lower plant (predominantly mosses and lichens) communities. Cyanobacteria are photosynthetic bacteria that require solar light, liquid water, air and some mineral nutrients for growth. They serve as primary producers of organic matter in Antarctic ecosystems providing energy to other physiological groups of microorganisms and invertebrates. Cyanobacteria form macroscopically visible crusts or thin biofilms on the surface of soils and rocks, or occupy endolithic niches in Antarctic mountains. Mountains exposed above the ice sheet could have remained ice-free during glaciation maxima in Antarctica. They could serve as a refuge for terrestrial biodiversity and potential source for recolonization of surrounding habitats during glacier retreat. Cyanobacterial diversity in habitats located above 1 km a.s.l. was studied in several Antarctic locations. These include: the Vinson Massif in Ellsworth Mountains (2000-2500 m a.s.l.), Beacon (1176 m a.s.l.) and University Valleys (1700 m a.s.l.) in the "stable upland zone" of the McMurdo Dry Valleys (Southern Victoria Land) and the Sör Rondane Mountains (1370-1700 m a.s.l.) (Yergeau et al., 2007; Wood et al., 2008; Fernandez-Carazo et al., 2012). The goal of our work was to study cyanobacterial diversity of cyanobacteria in the Sör Rondane Mountains in the vicinity of Belgian Princess Elisabeth Station. Previous estimates of the diversity showed the presence of 10 morphotypes and 13 OTUs of cyanobacteria in 10 samples of biofilms and microbial crusts (Fernandez-Carazo et al., 2012). We performed a broader sampling and studied cyanobacterial diversity using DGGE with cyanospecific primers and microscopy. In 126 samples, we observed 15 morphotypes of cyanobacteria. 28 representative samples were selected for molecular analyses that revealed the presence of 28 OTUs (groups of 16S rRNA sequences sharing at least 97,5% sequence similarity). Comparison with other mountainous areas of ...