Long‐term warming effects on the microbiome and nifH gene abundance of a common moss species in sub‐Arctic tundra

Bacterial communities form the basis of biogeochemical processes and determine plant growth and health. Mosses harbour diverse bacterial communities that are involved in nitrogen fixation and carbon cycling. Global climate change is causing changes in aboveground plant biomass and shifting species c...

Full description

Bibliographic Details
Published in:New Phytologist
Main Authors: Klarenberg, Ingeborg J., Keuschnig, Christoph, Russi Colmenares, Ana J., Warshan, Denis, Jungblut, Anne D., Jónsdóttir, Ingibjörg S., Vilhelmsson, Oddur
Other Authors: Líf- og umhverfisvísindadeild (HÍ), Faculty of Life and Environmental Sciences (UI), Verkfræði- og náttúruvísindasvið (HÍ), School of Engineering and Natural Sciences (UI), Háskóli Íslands, University of Iceland
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2021
Subjects:
Online Access:https://hdl.handle.net/20.500.11815/4553
Description
Summary:Bacterial communities form the basis of biogeochemical processes and determine plant growth and health. Mosses harbour diverse bacterial communities that are involved in nitrogen fixation and carbon cycling. Global climate change is causing changes in aboveground plant biomass and shifting species composition in the Arctic, but little is known about the response of moss microbiomes in these environments. Here, we studied the total and potentially active bacterial community associated with Racomitrium lanuginosum, in response to 20-year in situ warming in an Icelandic heathland. We evaluated the effect of warming and warming-induced shrub expansion on the moss bacterial community composition and diversity, and nifH gene abundance. Warming changed both the total and the potentially active bacterial community structure, while litter abundance only affected the total bacterial community structure. The abundance of nifH genes was negatively affected by litter abundance. We also found shifts in the potentially nitrogen-fixing community, with Nostoc decreasing and non-cyanobacterial diazotrophs increasing in relative abundance. Our data suggests that the moss microbial community and potentially nitrogen fixing taxa are sensitive to future warming, partly via changes in litter and shrub abundance. H2020 Marie Skłodowska-Curie Actions Post-print (lokagerð höfundar)