Historical demography and genetic differentiation of the giant freshwater prawn Macrobrachium rosenbergii in Bangladesh based on mitochondrial and ddRAD sequence variation

Macrobrachium rosenbergii, the giant freshwater prawn, is an important source of high quality protein and occurs naturally in rivers as well as commercial farms in South and South-East Asia, including Bangladesh. This study investigated the genetic variation and population structure of M. rosenbergi...

Full description

Bibliographic Details
Published in:Ecology and Evolution
Main Authors: Alam, M. M. Mahbub, Westfall, Kristen M., Pálsson, Snæbjörn
Other Authors: Líf- og umhverfisvísindadeild (HÍ), Faculty of Life and Environmental Sciences (UI), Verkfræði- og náttúruvísindasvið (HÍ), School of Engineering and Natural Sciences (UI), Háskóli Íslands, University of Iceland
Format: Article in Journal/Newspaper
Language:English
Published: Wiley-Blackwell 2017
Subjects:
Online Access:https://hdl.handle.net/20.500.11815/322
https://doi.org/10.1002/ece3.3023
Description
Summary:Macrobrachium rosenbergii, the giant freshwater prawn, is an important source of high quality protein and occurs naturally in rivers as well as commercial farms in South and South-East Asia, including Bangladesh. This study investigated the genetic variation and population structure of M. rosenbergii sampled from four rivers in Bangladesh (sample size ranged from 19 to 20), assessing sequence variation, both in the mitochondrial cytochrome oxidase subunit 1 (CO1) gene and in 106 single nucleotide polymorphisms (SNPs) sampled randomly from the genome with double digest RAD sequencing (ddRADseq). The mitochondrial variation presented a shallow genealogy with high haplotype diversity (h = 0.95), reflecting an expansion in population size for the last ~82 kyr. Based on the CO1 variation the current effective population size (Ne) was 9.7 × 106 (CI: 1.33 × 106 – 35.84 × 106) individuals. A significant population differentiation was observed with the mitochondrial CO1 sequence variation and based on the ddRADseq variation, which could be traced to the divergence of the population in the Naf River in the South-East border with Myanmar from the other populations. A differentiation in mtDNA haplotype frequencies was also observed between the Biskhali River and the Karnaphuli Rivers in eastern Bangladesh. This study demonstrated the use of high-throughput genotyping based on the ddRADseq method to reveal population structure at a small geographical scale for an important freshwater prawn. The information from this study can be utilized for management and conservation of this species in Bangladesh. United Nations University Fisheries Training Programme (UNUFTP), Iceland Peer Reviewed