Defining the metabolic phenotype of epithelial-mesenchymal transition in breast epithelium

Breast cancer is the leading cause of cancer deaths among women in Iceland and worldwide. Epithelial-mesenchymal transition (EMT) is a cellular developmental process where epithelial cells assume mesenchymal-like phenotypes through degradation of the extracellular matrix, loss of adhesions, and incr...

Full description

Bibliographic Details
Main Author: Wang, Qiong
Other Authors: Óttar Rolfsson, Læknadeild (HÍ), Faculty of Medicine (UI), Heilbrigðisvísindasvið (HÍ), School of Health Sciences (UI), Háskóli Íslands, University of Iceland
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: University of Iceland, School of Health Sciences, Faculty of Medicine 2022
Subjects:
Online Access:https://hdl.handle.net/20.500.11815/3188
Description
Summary:Breast cancer is the leading cause of cancer deaths among women in Iceland and worldwide. Epithelial-mesenchymal transition (EMT) is a cellular developmental process where epithelial cells assume mesenchymal-like phenotypes through degradation of the extracellular matrix, loss of adhesions, and increased mobility. It is believed that dissemination of cancer cells occurs partly following EMT. EMT contains a spectrum of epithelial-mesenchymal intermediate cell states that impart different degrees of malignancy. The ability of cells to assume these states is termed epithelial-mesenchymal plasticity (EMP). This project aimed at characterizing the metabolic phenotypes of EMT and EMP to obtain knowledge of breast cancer progression and to identify biomarkers and potential therapeutic targets for breast cancer treatment. Proteomics analysis of cell models of EMT and EMP revealed changes to enzymes involved in glycan metabolism. UDP-glucose dehydrogenase (UGDH) and glutamine-fructose-6-phosphate transaminase 2 (GFPT2) were identified as the topmost altered glycan metabolic enzymes in EMT and EMP, respectively. UGDH converts UDP-glucose into UDP-glucuronic acid and is involved in the formation of hyaluronan in the extracellular matrix. GFPT2 influences the downstream formation of UDP-N-acetylglucosamine (UDP-GlcNAc) and protein O-GlycNAcylation. UGDH was associated with patient survival, affected cell proliferation, cell invasion, and the expression of the EMT marker SNAI1. siRNA-mediated knockdown of UGDH influenced glycerophosphocholine (GPC) and increased N-acetylaspartate (NAA) levels. GFPT2 similiarly influenced cell proliferation, migration, invasion, and expression of the EMT marker vimentin and was associated with claudin-low breast cancer. GFPT2 was shown to be a marker of oxidative stress, and knockdown of GFPT2 affected cystathionine levels and the mitochondrial enzyme sulfide quinone oxidoreductase (SQOR). Phosphoproteomics analysis indicated distinct phosphorylation profiles of epithelial versus mesenchymal ...