Strained interface layer contributions to the structural and electronic properties of epitaxial V2O3 films

We report on the transport properties of epitaxial vanadium sesquioxide (V2O3) thin films with thicknesses in the range of 1 to 120 nm. Films with thickness down to nanometer values reveal clear resistivity curves with temperature illustrating that even at these thicknesses the films are above the p...

Full description

Bibliographic Details
Published in:Applied Physics Letters
Main Authors: Hajihoseini, Hamidreza, Thorsteinsson, Einar B., Sigurjonsdottir, Vilborg V., Arnalds, Unnar B.
Other Authors: Raunvísindastofnun (HÍ), Science Institute (UI), Verkfræði- og náttúruvísindasvið (HÍ), School of Engineering and Natural Sciences (UI), Háskóli Íslands, University of Iceland
Format: Article in Journal/Newspaper
Language:English
Published: AIP Publishing 2021
Subjects:
Online Access:https://hdl.handle.net/20.500.11815/2561
https://doi.org/10.1063/5.0043941
Description
Summary:We report on the transport properties of epitaxial vanadium sesquioxide (V2O3) thin films with thicknesses in the range of 1 to 120 nm. Films with thickness down to nanometer values reveal clear resistivity curves with temperature illustrating that even at these thicknesses the films are above the percolation threshold and continuous over large distances. The results reveal that with reducing thickness the resistivity of the films increases sharply for thicknesses below 4 nm and the metal-insulator transition (MIT) is quenched. We attribute this increase to a strained interface layer of thickness ∼ 4 nm with in-plane lattice parameters corresponding to the Al2O3 substrate. The interface layer displays a suppressed MIT shifted to higher temperatures and has a room temperature resistivity 6 orders of magnitude higher than the thicker V2O3 films. This work was supported by the University of Iceland Research Fund for Doctoral Students, the University of Iceland Research Fund, the Icelandic Student Innovation Fund, and the Icelandic Research Fund (Grant Nos. 207111 and 174271).